Optimization of Pulsating Heating in Pool Boiling

1997 ◽  
Vol 119 (2) ◽  
pp. 298-304 ◽  
Author(s):  
J. V. C. Vargas ◽  
A. Bejan

This paper describes an experimental and theoretical study of the periodic on and off heating of water on a horizontal surface. The heat transfer is effected by natural convection and isolated bubbles. The experiments cover the heat flux range 33–154 kW/m2 and the wall excess temperature range 7–13°C. It is shown experimentally that the cycle-averaged thermal conductance between the surface and the pool can be maximized by properly selecting the time intervals of the on and off heating cycle. The maximum relative augmentation of the thermal conductance is approximately 15 percent. In the second part of the study, an order of magnitude analysis shows that the cycle-averaged thermal conductance can be maximized analytically by considering only the single-phase natural convection effect, and that the optimal time interval when heating is “on” agrees with the experimental results.

2021 ◽  
pp. archdischild-2021-322479
Author(s):  
Charlotte Margaret Wright ◽  
Caroline Haig ◽  
Ulla Harjunmaa ◽  
Harshine Sivakanthan ◽  
Tim J Cole

BackgroundCurrent guidance on the optimum interval between measurements in infancy is not evidence based. We used routine data to explore how measurement error and short-term variation (‘noise’) might affect interpretation of infant weight and length gain (‘signal’) over different time intervals.MethodUsing a database of weights and lengths from 5948 infants aged 0–12 months, all pairs of measurements per child 2, 4 and 8 weeks apart were extracted. Separately, 20 babies aged 2–10 months were weighed on six occasions over 3 days to estimate the SD of the weight difference between adjacent measurements (=116 g). Values of 116 g and 0.5 cm for ‘noise’ were then used to model its impact on (a) the estimated velocity centile and (b) the chance of seeing no growth during the interval, in individuals.ResultsThe average gain in weight and length was much larger than the corresponding SD over 8-week and 4-week time intervals, but not over 2 weeks. Noise tended to make apparent velocity less extreme; after age 6 months, a 2-week velocity that appeared to be on to the ninth centile, would truly be on the second–third centile if measured with no noise. For 2-week intervals, there was a 16% risk of no apparent growth by age 10 months.ConclusionsGrowth in infancy is so rapid that the change in measurements 4–8 weeks apart is unlikely ever to be obscured by noise, but after age 6 months, measurements 2 weeks or less apart should be treated with caution when assessing growth faltering.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhang ◽  
Yilin Zeng ◽  
Zhen Yang ◽  
Chunyan Kang ◽  
Changxu Wu ◽  
...  

Conditional automated driving [level 3, Society of Automotive Engineers (SAE)] requires drivers to take over the vehicle when an automated system’s failure occurs or is about to leave its operational design domain. Two-stage warning systems, which warn drivers in two steps, can be a promising method to guide drivers in preparing for the takeover. However, the proper time intervals of two-stage warning systems that allow drivers with different personalities to prepare for the takeover remain unclear. This study explored the optimal time intervals of two-stage warning systems with insights into the drivers’ neuroticism personality. A total of 32 drivers were distributed into two groups according to their self-ratings in neuroticism (high vs. low). Each driver experienced takeover under the two-stage warning systems with four time intervals (i.e., 3, 5, 7, and 9 s). The takeover performance (i.e., hands-on-steering-wheel time, takeover time, and maximum resulting acceleration) and subjective opinions (i.e., appropriateness and usefulness) for time intervals and situation awareness (SA) were recorded. The results showed that drivers in the 5-s time interval had the best takeover preparation (fast hands-on steering wheel responses and sufficient SA). Furthermore, both the 5- and 7-s time intervals resulted in more rapid takeover reactions and were rated more appropriate and useful than the 3- and 9-s time intervals. In terms of personality, drivers with high neuroticism tended to take over immediately after receiving takeover messages, at the cost of SA deficiency. In contrast, drivers with low neuroticism responded safely by judging whether they gained enough SA. We concluded that the 5-s time interval was optimal for drivers in two-stage takeover warning systems. When considering personality, drivers with low neuroticism had no strict requirements for time intervals. However, the extended time intervals were favorable for drivers with high neuroticism in developing SA. The present findings have reference implications for designers and engineers to set the time intervals of two-stage warning systems according to the neuroticism personality of drivers.


2004 ◽  
Vol 18 (28n29) ◽  
pp. 1467-1478 ◽  
Author(s):  
AHMET EKİCİBİL ◽  
ATILLA COŞKUN ◽  
BEKIR ÖZÇELİK ◽  
KERIM KIYMAÇ

We report critical current density (Jc) behaviors of the Bi 1.7 Pb 0.3-x Gd x Sr 2 Ca 3 Cu 4 O 12+y (x=0.01, 0.1) superconductors prepared by melt-quenching method and annealed in different time intervals at 840°C. The effects of annealing times are found to be very important. For example, for the sample B2, the highest value of Jc is 3.7×104 A / cm 2 at 9 K. This value is almost 1.5 and 2 times greater than that of the samples B3 and B1, respectively. With increasing annealing time, the 2223 phase increases, thus resulting in a decrease in the insulating phase. For lower annealing times, there are a large number of insulating phases. On the whole, our results indicate that there is an optimum annealing time t to form the 2223 phase, in a time interval of 120<t<192 h . It is clearly seen that Jc decreases smoothly with increasing temperature for all the samples studied. At lower temperatures, especially below 30 K, an extremely rapid decrease of Jc with increasing temperature has been observed. The experimental values also show that between the temperature interval from 9–45 K, Jc decreases by one order of magnitude. We have also observed that when the Gd – Pb substitution increases, the effective defect density increases, leading to small critical current densities.


1963 ◽  
Vol 44 (3) ◽  
pp. 475-480 ◽  
Author(s):  
R. Grinberg

ABSTRACT Radiologically thyroidectomized female Swiss mice were injected intraperitoneally with 131I-labeled thyroxine (T4*), and were studied at time intervals of 30 minutes and 4, 28, 48 and 72 hours after injection, 10 mice for each time interval. The organs of the central nervous system and the pituitary glands were chromatographed, and likewise serum from the same animal. The chromatographic studies revealed a compound with the same mobility as 131I-labeled triiodothyronine in the organs of the CNS and in the pituitary gland, but this compound was not present in the serum. In most of the chromatographic studies, the peaks for I, T4 and T3 coincided with those for the standards. In several instances, however, such an exact coincidence was lacking. A tentative explanation for the presence of T3* in the pituitary gland following the injection of T4* is a deiodinating system in the pituitary gland or else the capacity of the pituitary gland to concentrate T3* formed in other organs. The presence of T3* is apparently a characteristic of most of the CNS (brain, midbrain, medulla and spinal cord); but in the case of the optic nerve, the compound is not present under the conditions of this study.


2008 ◽  
Vol 47 (06) ◽  
pp. 267-274 ◽  
Author(s):  
F. Boldt ◽  
C. Kobe ◽  
W. Eschner ◽  
H. Schicha ◽  
F. Sudbrock

Summary Aim: After application of radiopharmaceuticals the patient becomes a radioactive source which leads to radiation exposure in the proximity. The photon dose rates after administration of different radiopharmaceuticals used in diagnostic nuclear medicine were measured at several distances and different time intervals. These data are of importance for estimating the exposure of technologists and members of the public. Patients, method: In this study dose rates were measured for 67 patients after application of the following radiopharmaceuticals: 99mTc-HDP as well as 99mTcpertechnetate, 18F-fluorodeoxyglucose, 111In-Octreotid and Zevalin® and 123I-mIBG in addition to 123I-NaI. The dose rates were measured immediately following application at six different distances to the patient. After two hours the measurements were repeated and – whenever possible – after 24 hours and seven days. Results: Immediately following application the highest dose rates were below 1 mSv / h: with a maximum at 780 μSv/h for 18F (370 MBq), 250 μSv/h for 99mTc (700 MBq), 150 μSv/h for 111In (185 MBq) and 132 μSv/ h for 123I (370 MBq). At a distance of 0.5 m the values decrease significantly by an order of magnitude. Two hours after application the values are diminished to 1/3 (99mTc, 18F), to nearly ½ (123I) but remain in the same order of magnitude for the longer-lived 111In radiopharmaceuticals. Conclusion: For greater distances the doses remain below the limits outlined in the national legislation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


2021 ◽  
pp. 1-6
Author(s):  
Jacob R. Morey ◽  
Xiangnan Zhang ◽  
Kurt A. Yaeger ◽  
Emily Fiano ◽  
Naoum Fares Marayati ◽  
...  

<b><i>Background and Purpose:</i></b> Randomized controlled trials have demonstrated the importance of time to endovascular therapy (EVT) in clinical outcomes in large vessel occlusion (LVO) acute ischemic stroke. Delays to treatment are particularly prevalent when patients require a transfer from hospitals without EVT capability onsite. A computer-aided triage system, Viz LVO, has the potential to streamline workflows. This platform includes an image viewer, a communication system, and an artificial intelligence (AI) algorithm that automatically identifies suspected LVO strokes on CTA imaging and rapidly triggers alerts. We hypothesize that the Viz application will decrease time-to-treatment, leading to improved clinical outcomes. <b><i>Methods:</i></b> A retrospective analysis of a prospectively maintained database was assessed for patients who presented to a stroke center currently utilizing Viz LVO and underwent EVT following transfer for LVO stroke between July 2018 and March 2020. Time intervals and clinical outcomes were compared for 55 patients divided into pre- and post-Viz cohorts. <b><i>Results:</i></b> The median initial door-to-neuroendovascular team (NT) notification time interval was significantly faster (25.0 min [IQR = 12.0] vs. 40.0 min [IQR = 61.0]; <i>p</i> = 0.01) with less variation (<i>p</i> &#x3c; 0.05) following Viz LVO implementation. The median initial door-to-skin puncture time interval was 25 min shorter in the post-Viz cohort, although this was not statistically significant (<i>p</i> = 0.15). <b><i>Conclusions:</i></b> Preliminary results have shown that Viz LVO implementation is associated with earlier, more consistent NT notification times. This application can serve as an early warning system and a failsafe to ensure that no LVO is left behind.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 63 ◽  
Author(s):  
Thomas Meunier ◽  
Claire Ménesguen ◽  
Xavier Carton ◽  
Sylvie Le Gentil ◽  
Richard Schopp

The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework using the generalized stability theory. Optimal perturbations are obtained using a tangent linear QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates of optimal perturbations are shown to be extremely sensitive to the time interval of optimization: The most unstable perturbations are found for time intervals of about 3 days, while the growth rates continuously decrease towards the most unstable normal mode, which is reached after about 170 days. The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling. It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong layering associated with high vertical wave numbers whatever the time interval. However, the latter parameter plays an important role in the width of the vertical spectrum of the perturbation: short time interval perturbations have a narrow vertical spectrum while long time interval perturbations show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent with normal mode instability. Very long time intervals simply behave like the most unstable normal mode. The possible impact of optimal perturbations on layering is also discussed.


The present paper describes an investigation of diffusion in the solid state. Previous experimental work has been confined to the case in which the free energy of a mixture is a minimum for the single-phase state, and diffusion decreases local differences of concentration. This may be called ‘diffusion downhill’. However, it is possible for the free energy to be a minimum for the two-phase state; diffusion may then increase differences of concentration; and so may be called ‘diffusion uphill’. Becker (1937) has proposed a simple theoretical treatment of these two types of diffusion in a binary alloy. The present paper describes an experimental test of this theory, using the unusual properties of the alloy Cu 4 FeNi 3 . This alloy is single phase above 800° C and two-phase at lower temperatures, both the phases being face-centred cubic; the essential difference between the two phases is their content of copper. On dissociating from one phase into two the alloy develops a series of intermediate structures showing striking X-ray patterns which are very sensitive to changes of structure. It was found possible to utilize these results for a quantitative study of diffusion ‘uphill’ and ‘downhill’ in the alloy. The experimental results, which can be expressed very simply, are in fair agreement with conclusions drawn from Becker’s theory. It was found that Fick’s equation, dc / dt = D d2c / dx2 , can, within the limits of error, be applied in all cases, with the modification that c denotes the difference of the measured copper concentration from its equilibrium value. The theory postulates that D is the product of two factors, of which one is D 0f the coefficient of diffusion that would be measured if the alloy were an ideal solid solution. The theory is able to calculate D/D 0 , if only in first approximation, and the experiments confirm this calculation. It was found that in most cases the speed of diffusion—‘uphill’ or ‘downhill’—has the order of magnitude of D 0 . * Now with British Electrical Research Association.


Sign in / Sign up

Export Citation Format

Share Document