Failure of X52 Wrinkled Pipelines Subjected to Monotonic Axial Deformation

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Y. Zhang ◽  
S. Das

This study was undertaken to investigate and understand the behavior of a wrinkled energy pipeline when subjected to sustained monotonic axial compressive deformation. This study involved both experimental and numerical investigations. Two full-scale laboratory tests with moderate and high internal pressures on X52 grade steel pipes with a diameter-to-thickness ratio of 45 show that this pipeline is extremely ductile and did not rupture under axisymmetric compressive axial deformation. However, they fail due to the excessive cross-sectional deformation and the final deformed shape looks like an accordion due to the formation of multiple wrinkles. Subsequently, a detailed parametric study using a numerical technique was undertaken to determine the failure condition and failure mode of this pipeline for various realistic internal pressures and diameter-to-thickness ratios. A nonlinear finite element method was used for the numerical study. The numerical model was validated with the data obtained from the two full-scale tests. The parametric study shows that the X52 linepipe loses its integrity due to the rupture in the pipe wall if the internal pressure is low and/or if the pipe has a small diameter-to-thickness ratio. This paper presents and discusses the results obtained both from the experimental and numerical parametric studies.

Author(s):  
Michael Huber ◽  
Dharma Wijewickreme

District heating (DH) systems are commonly used in urban areas to distribute thermal energy from central heat sources. Buried pipes, with a composite cross-sectional construction, are used transport a heated medium, usually water. These pipes expand and contract radially and axially due to changing water temperatures, invoking soil-pipe interaction situations during operation, and potentially leading to significant pipeline material strains. A series of full-scale tests were undertaken to specifically investigate the influence of thermal expansion on axial pullout resistance using DH pipes buried in sand in a full-scale soil-pipe interaction test chamber. During testing, the pipe is filled with water that is subjected to temperature changes to simulate field conditions. Axial pipe pull-out tests were conducted after applying a given “heating history” with axial pullout force and displacements recorded. The work leads to better understanding of soil-pipe interaction mechanisms generating currently scarce data needed for robust and cost-effective designs of DH pipe systems.


2019 ◽  
Vol 23 (7) ◽  
pp. 1276-1289 ◽  
Author(s):  
Jia-zhan Su ◽  
Xi-lun Ma ◽  
Bao-chun Chen ◽  
Khaled Sennah

Due to its structural efficiency, durability, and cost-effectiveness, ultra-high performance concrete was utilized to build the first highway overpass bridge in China. The bridge was made of prestressed ultra-high performance concrete box girders of four continuous spans of 30 m each. As the original design of such bridge was observed to be somewhat conservative, its cross-sectional dimensions, in the form of the box girder wall thicknesses were optimized in this research to lower the material cost in future bridge construction. Then, a full-scale simply supported ultra-high performance concrete box girder of 30 m span, incorporating the new box girder wall thicknesses, was fabricated and then tested under static loading to obtain research data to justify the revised design. The loading system was designed to examine the flexural behavior of the girder using two concentrated loads symmetrically located at the mid-span. Experimental results show that the optimized girder has a favorable ductile behavior and excellent flexural strength, which can meet the design requirements for serviceability and ultimate limit states. A finite element model of the tested girder was developed, using ABAQUS software, and then was verified using the experimental findings. A parametric study was then conducted to investigate the influence of key parameters on the structural response, namely, the reinforcement ratio, the number of the prestressing wires, and the web thickness. Recommendations on minimum and maximum compressive strength and tensile property of ultra-high performance concrete were proposed. Also, a simplified calculation method of prestressed ultra-high performance concrete box girder was developed based on a verified strain and stress diagrams for cross-sectional analysis. The proposed methodology can be used in future practice with confidence.


2000 ◽  
Vol 37 (5) ◽  
pp. 987-999 ◽  
Author(s):  
P Villard ◽  
J P Gourc ◽  
H Giraud

To prevent the appearance of localized sinkholes under roads and railway lines in areas at risk, a research program testing a geosynthetic reinforcement solution was carried out by a group of laboratories. The aim of the reinforcement is to limit surface deformation after the appearance of a sinkhole by making the surface settlement as compatible as possible with the geometrical safety criteria of the road or railway line until earth filling and repair works can be scheduled. Full-scale tests were carried out on reinforced, instrumented road and railway structures subjected to localized collapse. At the same time, a numerical study was carried out to gain a better understanding of the mechanisms involved (arch effect, membrane effect, and collapse mechanisms). The experimental results of the full-scale tests were analyzed and compared with the results of three-dimensional finite element modeling.Key words: localized sinkhole, karstic cavity, reinforcement, geosynthetic.


2021 ◽  
Vol 11 (8) ◽  
pp. 3404
Author(s):  
Majid Hejazian ◽  
Eugeniu Balaur ◽  
Brian Abbey

Microfluidic devices which integrate both rapid mixing and liquid jetting for sample delivery are an emerging solution for studying molecular dynamics via X-ray diffraction. Here we use finite element modelling to investigate the efficiency and time-resolution achievable using microfluidic mixers within the parameter range required for producing stable liquid jets. Three-dimensional simulations, validated by experimental data, are used to determine the velocity and concentration distribution within these devices. The results show that by adopting a serpentine geometry, it is possible to induce chaotic mixing, which effectively reduces the time required to achieve a homogeneous mixture for sample delivery. Further, we investigate the effect of flow rate and the mixer microchannel size on the mixing efficiency and minimum time required for complete mixing of the two solutions whilst maintaining a stable jet. In general, we find that the smaller the cross-sectional area of the mixer microchannel, the shorter the time needed to achieve homogeneous mixing for a given flow rate. The results of these simulations will form the basis for optimised designs enabling the study of molecular dynamics occurring on millisecond timescales using integrated mix-and-inject microfluidic devices.


Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Prasad R ◽  
Thanigaiarasu S ◽  
Sembaruthi M ◽  
Rathakrishnan E

AbstractThe present numerical study is to understand the effect of air tabs located at the exit of a convergent nozzle on the spreading and mixing characteristics of correctly expanded sonic primary jet. Air tabs used in this study are two secondary jets issuing from constant diameter tubes located diametrically opposite at the periphery of the primary nozzle exit, normal to the primary jet. Two air tabs of Mach numbers 1.0 to 1.4, in steps of 0.1 are considered in this study. The mixing modification caused by air tabs are analysed by considering the mixing of uncontrolled (free) primary jet as a reference. Substantial enhancement in jet mixing is achieved with Mach 1.4 air tabs, which results in 80 % potential core length reduction. The total pressure profiles taken on the plane (YZ) normal to the primary jet axis, at various locations along the primary jet centreline revealed the modification of the jet cross sectional shape by air tabs. The stream-wise vortices and bifurcation of the primary jet caused by air tabs are found to be the mechanism behind the enhanced jet mixing.


Author(s):  
Hailing Yu

In ballasted concrete tie track, the tie-ballast interface can deteriorate resulting in concrete tie bottom abrasion, ballast pulverization and/or voids in tie-ballast interfaces. Tie-ballast voids toward tie ends can lead to unfavorable center binding support conditions that can result in premature concrete tie failure and possible train derailment. Direct detection of these conditions is difficult. There is a strong interest in assessing the concrete tie-ballast interface conditions indirectly using measured vertical deflections. This paper seeks to establish a link between the vertical deflection profile of a concrete tie top surface and the tie-ballast interface condition using the finite element analysis (FEA) method. The concrete tie is modeled as a concrete matrix embedded with prestressing steel strands or wires. The configurations of two commonly used concrete ties, one with 8 prestressing strands and the other with 20 prestressing wires, are employed in this study. All models are three-dimensional and symmetric about the tie center. A damaged plasticity model that can predict onset and propagation of tensile cracks is applied to the concrete material. The steel-concrete interface is homogenized and represented with a thin layer of cohesive elements sandwiched between steel and concrete elements. Strand- or wire-specific elasto-plastic bond models developed at the Volpe Center are applied to the cohesive elements to account for the interface bonding mechanisms. FE models are developed for both original and worn concrete ties, with the latter assuming hypothetical patterns of reduced cross sections resulting from abrasive interactions with the ballast. Static analyses of pretension release in these concrete ties are conducted, and vertical deflection gradients along tie lengths are calculated and shown to correspond well with the worn cross sectional patterns for a given reinforcement type. The ballast is further modeled with Extended Drucker-Prager plasticity, and hypothetical voids are applied toward the tie ends along the concrete tie-ballast interface to simulate center binding support conditions. The distance range over which the concrete tie is supported in the center is variable and yields different center binding severity. Static simulations are completed with vertical rail seat loads applied on the concrete tie-ballast assembly. The influences of various factors on the vertical deflection profile, including tie type, vertical load magnitude, center binding severity, cross sectional material loss and prestress loss, are examined based on the FEA results. The work presented in this paper demonstrates the potential of using the vertical deflection profile of concrete tie top surfaces to assess deteriorations in the tie-ballast interface. The simulation results further help to clarify minimum technical requirements on inspection technologies that measure concrete tie vertical deflection profiles.


Sign in / Sign up

Export Citation Format

Share Document