Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability

1994 ◽  
Vol 116 (2) ◽  
pp. 287-294 ◽  
Author(s):  
H. Heshmat

An advanced-design, aerodynamic, air-lubricated foil journal bearing achieved a landmark speed of 2200 cps (132,000 rpm) and a major breakthrough in load performance of 673.5 kPa (97.7 psi). At 20°C (68°F) room temperature, normal ambient pressure, 995 cps (59,700 rpm) rotor speed, and with bearing projected pad area of 1081 mm2 (1.675 in2), the bearing demonstrated a load capacity of 727.8 N (163.6 lb). The bearing also exhibited low heat generation, with about 40°C (104°F) average side leakage temperature rise. For this demonstration, a highspeed spindle utilizing a pair of 35-mm (1.375-in.) bearings and supporting a test rotor with a mass of 1.545 kg (weighing 3.41 lb) and overall length of 211 mm (8.3 in.) was successfully taken to the limiting speed of the test apparatus. This speed was set by the maximum sound velocity (Mach 1) in the spindle’s turbine wheel. The rotor/bearing speed of 4.62 × 106 DN is beyond the capability of any advanced oil-lubricated ball bearings or conventional gas-lubricated bearings. The net result is a highly stable bearing at high operating speed. This paper presents the development of this air-lubricated foil journal bearing, the operational procedures used during testing, test results (dynamic analyses), and load performance characteristics.

1969 ◽  
Vol 91 (1) ◽  
pp. 171-180 ◽  
Author(s):  
W. Shapiro

The inherent limitations of load capacity and stability of hydrodynamic gas-lubricated bearings can be reduced by introducing external pressure and creating a hybrid bearing. Numerical computerized analyses of a hybrid journal bearing are discussed; separate developments are presented for steady-state and dynamic characteristics. The steady-state analysis provides performance over a wide range of operating parameters; the more complicated and lengthy dynamic analysis determines stability of the bearing-rotor system using geometry based upon steady-state results. Simplified flow charts of the computer programs are included. The analyses are applied to the preliminary design of a hybrid journal bearing.


1982 ◽  
Vol 104 (2) ◽  
pp. 149-156 ◽  
Author(s):  
H. Heshmat ◽  
W. Shapiro ◽  
S. Gray

This paper describes the development of two types of air-lubricated foil journal bearings, designed for separate purposes; stability and load capacity. The first was a three-pad configuration, with each pad forming a wedge whose convergence increases with operating speed (of 120,000 rpm max.). The net result is a highly stable bearing at high operating speed. The second was a single pad journal bearing (43.7 mm diameter × 34.9 mm long) that produced a load capacity of 352 KPa (51 psi) at an operating speed of 68,000 rpm.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


1990 ◽  
Vol 112 (2) ◽  
pp. 224-229 ◽  
Author(s):  
G. Gupta ◽  
C. R. Hammond ◽  
A. Z. Szeri

The aim of this paper is to make available to the industrial designer results of the thermohydrodynamic theory of journal bearings, by providing a simplified, yet accurate model of journal bearing lubrication that can be implemented on a personal computer and be used in an interactive mode. The simplified THD theory we propose consists of two coupled ordinary differential equations for pressure and energy and an algebraic equation for viscosity, which are to be solved iteratively. Bearing load capacity, maximum bearing temperature, maximum pressure, coefficient of friction and lubricant flow rate calculated from this simplified theory compare well with results from a more sophisticated model. We also make comparisons with experimental data on full journal bearings, demonstrating substantial agreement between experiment and simplified theory.


Author(s):  
I Pierre ◽  
M Fillon

Hydrodynamic journal bearings are essential components of high-speed machinery. In severe operating conditions, the thermal dissipation is not a negligible phenomenon. Therefore, a three-dimensional thermohydrodynamic (THD) analysis has been developed that includes lubricant rupture and re-formation phenomena by conserving the mass flowrate. Then, the predictions obtained with the proposed numerical model are validated by comparison with the measurements reported in the literature. The effects of various geometric factors (length, diameter and radial clearance) and operating conditions (rotational speed, applied load and lubricant) on the journal bearing behaviour are analysed and discussed in order to inform bearing designers. Thus, it can be predicted that the bearing performance obtained highly depends on operating conditions and geometric configuration.


1994 ◽  
Vol 116 (1) ◽  
pp. 147-153 ◽  
Author(s):  
N. M. Franchek ◽  
D. W. Childs

In this study, four hybrid bearings having different geometric configurations were experimentally tested for their static and dynamic characteristics, including flowrate, load capacity, rotordynamic coefficients, and whirl frequency ratio. The four bearings included a square-recess, smooth-land, radial-orifice bearing (baseline), a circular-recess bearing, a triangular-recess bearing, and an angled-orifice bearing. Each bearing had the same orifice diameter rather than the same pressure ratio. Unique to these test results is the measurement of the added mass terms, which became significant in the present tests because of high operating Reynolds numbers. Comparisons of the results were made between bearings to determine which bearing had the best performance. Based on the parameters of interest, the angled-orifice bearing has the most favorable overall performance.


1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


Author(s):  
P. S. Keogh ◽  
M. M. Khonsari

The evaluation of the thermohydrodynamic (THD) performance of journal bearings continues to be an important issue. This is particularly so for high speed or heavily loaded bearing designs. This paper focuses attention on the thermal boundary conditions at the lubricant-bearing interface. The solid component conduction problem is solved in advance of the main THD analysis. Boundary conditions are then imposed on the lubricant THD analysis through use of an appropriate influence coefficient matrix that incorporates the solid component conduction problem. This avoids the current practice of solving the lubricant and solid component problems separately in an iterative loop to achieve continuous temperatures and heat fluxes at the interface. Instead, only the lubricant problem needs to be solved using the boundary conditions imposed by the influence coefficient matrix.


Author(s):  
S. Strzelecki ◽  
Z. Towarek

The design of turbines and compressors operating at the high rotational speeds applies the 3-lobe journal bearings. In many cases the classic 3-lobe journal bearings supporting the rotors, are showing the problem of rotor stability. This problem can be avoided by the application of 3-lobe Offset bearings. This type of bearing fulfils the conditions of reliable bearing design and good stability in the case of high speed rotating machines.


Author(s):  
Sanyam Sharma ◽  
Chimata M Krishna

The plain circular journal bearings are not found to be stable by researchers when used in high speed rotating machineries. Hence, extensive research in the study of stability characteristics of non-circular bearings or lobed bearings assumed importance, of late. Present article deals with the stability analysis of non-circular offset bearing by taking selected set of input and output parameters. Modified Reynolds equation for micropolar lubricated rigid journal bearing system is solved using finite element method. Two kinds of input parameters namely, offset factors (0.2, 0.4) and aspect ratios (1.6, 2.0) have been selected for the study. The important output characteristics such as load, critical mass, whirl frequency ratio, and threshold speed are computed and plotted for various set of values of input parameters. The results obtained indicate that micropolar lubricated circular offset bearing is highly stable for higher offset factor and higher aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document