Modeling and Implementation of Semi-Active Hydraulic Engine Mounts

1988 ◽  
Vol 110 (4) ◽  
pp. 422-429 ◽  
Author(s):  
P. L. Graf ◽  
R. Shoureshi

In an effort to improve passenger comfort, the automotive industry is evaluating more sophisticated techniques to reduce engine excited frame vibrations. A new approach is to implement hydraulic mounts in a semi-active mode. In this mode, low power actuators are used to change the impedance characteristics of the mount. This paper presents a dynamic model and analysis of the semi-active hydraulic mount. Experimental data confirming the mount model are presented. Finally, results of an experimental study on the implementation of the semi-active mounts on a production automotive vehicle are presented. The study focuses on frame vibration reduction during engine idle. The semi-active hydraulic mounts show improved vibration levels over passive hydraulic mounts in the vehicle application.

Author(s):  
Bien Van VO ◽  
Martin MACKO ◽  
Hung M. DAO

The article presents a new approach to finding the dynamic characteristics of automatic weapons, mainly in case of burst firing. The experiments were tested out on a 30 mm AGS-17 grenade launcher mounted on a tripod in the event of a shot. The obtained results are the basis for evaluating the firing stability of an automatic weapon when burst firing, which allows modernising the existing weapons and evaluating similar weapon systems. Furthermore, the outputs can be used to validate a dynamic model of an automatic weapon system mounted on the tripod. The procedure can be used as an example of practical technique and methodology for other weapon systems.


2011 ◽  
Vol 356-360 ◽  
pp. 2592-2595
Author(s):  
Tai Lv ◽  
Bin Li ◽  
Ting Ting Zhou

The study effort was in progress through a thermogravimetric analyzer which export experimental data for construction pyrogenation dynamic model when import varied coal grain diameter in non-isothermal thermogravimetry method. This paper chiefly introduces a study on coal pyrogenation process with different altering parameter like temperature rise rate, grain diameter of coal that has been proved to affect in a big way in the whole work. The experimental research represents that there are four stages of the coal thermal decomposition, taking volatile release feature index as basic characteristic reflection to establish a thermogravimetry dynamic model.


Author(s):  
Ivelin Kostov

In the work brought some experimental data of kinematic parameters of movement of cars forced idle, as the software product was used to diagnose 900 ATS, which recorded kinematic parameters of vehicle. On the basis of the conducted experimental research results are shown tabulated and analysed.


1992 ◽  
Vol 57 (1) ◽  
pp. 33-45
Author(s):  
Vladimír Jakuš

A new approach to theoretical evaluation of the Gibbs free energy of solvation was applied for estimation of retention data in high-performance liquid chromatography on reversed phases (RP-HPLC). Simple and improved models of stationary and mobile phases in RP-HPLC were employed. Statistically significant correlations between the calculated and experimental data were obtained for a heterogeneous series of twelve compounds.


2021 ◽  
pp. 105971232110310
Author(s):  
Charles Lenay

The aim of this article is to offer a new approach of perception regarding the position of a distant object. It is also a tribute to John Stewart who accompanied the first stages of this research. Having already examined the difficulties surrounding questions of the perception of exteriority within the framework of enactive approaches, we will proceed in two stages. The first stage will consist of an attempt to explain distal perception in terms of individual sensorimotor invariants. This poses the problem but fails to solve it. The second stage will propose a new pathway to account for spatial perception; a pathway that does not deny the initial intuitions of the autopoietic enactive approaches, but one which radically changes the conception of cognition by considering, from the perceptual stage, the need to take into account interindividual interactions. The protocol of an original experimental study will characterize this new approach considering the perceptual experience of objects at a distance, in exteriority, in a space of possibilities without parting from the domain of interaction. To do this, we have to work at the limits of the perceptual crossing, that is, at the moment when the perceptual reciprocity between different subjects begins to disappear.


2011 ◽  
Vol 42 (10) ◽  
pp. 9-14
Author(s):  
L.Y. Liu ◽  
J.Y. Li ◽  
X.J. Yin

To study the vibration reduction performance of damped rail, we take the standard rail and labyrinth constrained damped rail as the study target. By testing the vibration performance of both standard rail and labyrinth constrained damped rail in an anechoic room, we use the time-domain analysis to study the vibration changes with time passing. The results showed that: the labyrinth constrained damped rail vibration can effectively reduce the vibration amplitude and duration. Under the radial impact load, compared to the standard rail, vibration acceleration attenuation of the labyrinth constrained damped rail is 5% −19%, time of vibration and attenuation greater than 94%; under the axial impact load, compared to the standard rail, vibration acceleration attenuation of the labyrinth constrained damped rail is 9% −21%, time of vibration and attenuation greater than 92%. The results have provided an experimental basis for the design of new constrained damped rail.


2012 ◽  
Vol 498 ◽  
pp. 91-96 ◽  
Author(s):  
J. Gomar ◽  
A. Amaro ◽  
E. Vázquez ◽  
J. Ciurana ◽  
C. Rodríguez

The use of conventional machining processes has been subject to important decline probably due to the increment in the use of emerging technologies. Therefore, the main applications of these traditional processes, such as automotive industry, are in crisis. In order to have a chance to compete successfully in the new trends, the machining industry must meet the needs of alternative sectors such as biomedical field. The aim of this study is to prove the capacity of micro-milling, by machining complex micro-cavities on aluminum workpiece using a conventional milling machine. Results are obtained by evaluating accuracy and geometric features. This study finds that the feed per tooth is a significant factor in order to obtain better results. The use of coolant increases the tool wear and therefore dimensional errors. This scope is a potential opportunity to reutilize the conventional machines from a new approach.


Sign in / Sign up

Export Citation Format

Share Document