The Meniscus Instability of a Thin Liquid Film

1988 ◽  
Vol 55 (4) ◽  
pp. 975-980 ◽  
Author(s):  
H. Koguchi ◽  
M. Okada ◽  
K. Tamura

This paper reports on the instability for the meniscus of a thin film of a very viscous liquid between two tilted plates, which are separated at a constant speed with a tilt angle in the normal direction of the plates. The disturbances on the meniscus moving with movement of the plates are examined experimentally and theoretically. The disturbances are started when the velocity of movement of the plates exceeds a critical one. The wavelength of the disturbances is measured by using a VTR. The instability of the meniscus is studied theoretically using the linearized perturbation method. A simple and complete analytical solution yields both a stability criterion and the wave number for a linear thickness geometry. These results compared with experiments for the instability show the validity of the stability criterion and the best agreement is obtained with the wave number of maximum amplification.

1980 ◽  
Vol 102 (4) ◽  
pp. 466-477 ◽  
Author(s):  
Ge´rard Dalmaz

The conditions of film formation and of film separation are examined experimentally and theoretically in a line Hertzian contact when the inlet region is partially filled with oil, in steady state hydrodynamic regime, for both rolling and sliding conditions. It is shown experimentally that the importance of the parameter μU/T (viscosity and speed/surface tension) differs at inlet and exit. At contact exit the influence of μU/T is dominant and the film divides to form a meniscus which can be stable or unstable. The validity of the Coyne and Elrod model is confirmed. At contact inlet when reverse flow disappears, a meniscus is also formed with a downstream circulation zone. The instability of the exit air-oil meniscus is studied theoretically using the linearized perturbation method with the thin film assumptions. A simple and complete analytical solution yields both a stability criterion and the wave number for the linear contact geometry. These results which are compared with experiments for thin film and for 0.01 < μU/T < 1 show the validity of the stability criterion and that best agreement is obtained with the wave number of maximum amplification.


2000 ◽  
Vol 77 (11) ◽  
pp. 847-862 ◽  
Author(s):  
MRA Shegelski ◽  
M Reid ◽  
R Niebergall

We consider the motion of a cylinder with the same mass and sizeas a curling rock, but with a very different contact geometry.Whereas the contact area of a curling rock is a thin annulus havinga radius of 6.25 cm and width of about 4 mm, the contact area of the cylinderinvestigated takes the form of several linear segments regularly spacedaround the outer edge of the cylinder, directed radially outward from the center,with length 2 cm and width 4 mm. We consider the motion of this cylinderas it rotates and slides over ice having the nature of the ice surfaceused in the sport of curling. We have previously presented a physicalmodel that accounts for the motion of curling rocks; we extend this modelto explain the motion of the cylinder under investigation. In particular,we focus on slow rotation, i.e., the rotational speed of the contact areasof the cylinder about the center of mass is small compared to thetranslational speed of the center of mass.The principal features of the model are (i) that the kineticfriction induces melting of the ice, with the consequence that thereexists a thin film of liquid water lying between the contact areasof the cylinder and the ice; (ii) that the radial segmentsdrag some of the thin liquid film around the cylinder as it rotates,with the consequence that the relative velocity between the cylinderand the thin liquid film is significantly different than the relativevelocity between the cylinder and the underlying solid ice surface.Since it is the former relative velocity that dictates the nature of themotion of the cylinder, our model predicts, and observations confirm, thatsuch a slowly rotating cylinder stops rotating well before translationalmotion ceases. This is in sharp contrast to the usual case of most slowlyrotating cylinders, where both rotational and translational motion ceaseat the same instant. We have verified this prediction of our model bycareful comparison to the actual motion of a cylinder having a contactarea as described.PACS Nos.: 46.00, 01.80+b


1990 ◽  
Vol 112 (1) ◽  
pp. 10-15 ◽  
Author(s):  
M. I. Flik ◽  
C. L. Tien

Intrinsic thermal stability denotes a situation where a superconductor can carry the operating current without resistance at all times after the occurrence of a localized release of thermal energy. This novel stability criterion is different from the cryogenic stability criteria for magnets and has particular relevance to thin-film superconductors. Crystals of ceramic high-temperature superconductors are likely to exhibit anisotropic thermal conductivity. The resultant anisotropy of highly oriented films of superconductors greatly influences their thermal stability. This work presents an analysis for the maximum operating current density that ensures intrinsic stability. The stability criterion depends on the amount of released energy, the Biot number, the aspect ratio, and the ratio of the thermal conductivities in the plane of the film and normal to it.


2018 ◽  
Vol 851 ◽  
Author(s):  
Rajesh K. Bhagat ◽  
N. K. Jha ◽  
P. F. Linden ◽  
D. Ian Wilson

This study explores the formation of circular thin-film hydraulic jumps caused by the normal impact of a jet on an infinite planar surface. For more than a century, it has been believed that all hydraulic jumps are created due to gravity. However, we show that these thin-film hydraulic jumps result from energy loss due to surface tension and viscous forces alone. We show that, at the jump, surface tension and viscous forces balance the momentum in the liquid film and gravity plays no significant role. Experiments show no dependence on the orientation of the surface and a scaling relation balancing viscous forces and surface tension collapses the experimental data. A theoretical analysis shows that the downstream transport of surface energy is the previously neglected critical ingredient in these flows, and that capillary waves play the role of gravity waves in a traditional jump in demarcating the transition from the supercritical to subcritical flow associated with these jumps.


Author(s):  
S. B. Liang ◽  
G. P. Xu

Self-sustainable motions of the slug flow in oscillating heat pipes have been investigated in the paper. Thin film condensation in the capillary channels of the condenser of the oscillating heat pipes was studied. Instability of the thin liquid film on the characteristics of heat pipes was analysed. The extra thermal resistance caused by the thickness of the thin liquid film was taken into account for the numerical simulation of the oscillatory motions of the slug flow in the heat pipes. Saturated temperatures and pressures of the working fluid in the condenser were obtained. Thermoacoustic theory was applied to calculate heat transport through the adiabatic section of the heat pipes. Experimental studies were carried out to understand the heat transfer behaviours of heat pipes. One heat pipe with the working fluid of HFC-134a was evaluated. The heat pipe is made of aluminium plate and has the width of 50 mm and thickness of 1.9 mm. Numerical and experimental results relevant to the heat transport capability of the heat pipe were analysed and compared.


Soft Matter ◽  
2016 ◽  
Vol 12 (44) ◽  
pp. 9105-9114 ◽  
Author(s):  
Xurui Zhang ◽  
Plamen Tchoukov ◽  
Rogerio Manica ◽  
Louxiang Wang ◽  
Qingxia Liu ◽  
...  

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Kuldeep Singh ◽  
Medhat Sharabi ◽  
Richard Jefferson-Loveday ◽  
Stephen Ambrose ◽  
Carol Eastwick ◽  
...  

Abstract In the case of aero-engine, thin lubricating film servers dual purpose of lubrication and cooling. Prediction of dry patches or lubricant starved region in bearing or bearing chambers are required for safe operation of these components. In this work, thin liquid film flow is numerically investigated using the framework of the Eulerian thin film model (ETFM) for conditions, which exhibit partial wetting phenomenon. This model includes a parameter that requires adjustment to account for the dynamic contact angle. Two different experimental data sets have been used for comparisons against simulations, which cover a wide range of operating conditions including varying the flowrate, inclination angle, contact angle, and liquid–gas surface tension coefficient. A new expression for the model parameter has been proposed and calibrated based on the simulated cases. This is employed to predict film thickness on a bearing chamber which is subjected to a complex multiphase flow. From this study, it is observed that the proposed approach shows good quantitative comparisons of the film thickness of flow down an inclined plate and for the representative bearing chamber. A comparison of model predictions with and without wetting and drying capabilities is also presented on the bearing chamber for shaft speed in the range of 2500 RPM to 10,000 RPM and flowrate in the range of 0.5 liter per minute (LPM) to 2.5 LPM.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
C. K. Chen ◽  
M. C. Lin

This paper investigates the stability of a thin liquid film with condensation effects during spin coating. A generalized nonlinear kinematic model is derived by the long-wave perturbation method to represent the physical system. The weakly nonlinear dynamics of a film flow are studied by the multiple scales method. The Ginzburg–Landau equation is determined to discuss the necessary conditions of the various states of the critical flow states, namely, subcritical stability, subcritical instability, supercritical stability, and supercritical explosion. The study reveals that decreasing the rotation number and the radius of the rotating circular disk generally stabilizes the flow.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (5) ◽  
pp. 249-258
Author(s):  
ZAHRA NOORI ◽  
JAMAL S. YAGOOBI ◽  
BURT S. TILLEY

In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two differ-ent types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.


Sign in / Sign up

Export Citation Format

Share Document