Fundamental understanding of removal of liquid thin film trapped between fibers in the paper drying process: A microscopic approach

TAPPI Journal ◽  
2020 ◽  
Vol 19 (5) ◽  
pp. 249-258
Author(s):  
ZAHRA NOORI ◽  
JAMAL S. YAGOOBI ◽  
BURT S. TILLEY

In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two differ-ent types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.

Author(s):  
Francisco J. Durán-Olivencia ◽  
Milad Farzad ◽  
Burt S. Tilley ◽  
Jamal S. Yagoobi

Drying process represents one of the main energy-consuming stages for a broad variety of manufacturers. However, despite its significant impact on energy efficiency, most implementations at manufacturing level do not operate within the optimal conditions. This work investigates the interplay among different parameters involved into the paper-drying process. To do so, we analyze both experimental and numerical results. The theoretical approach couples a non-isothermal flow, along with the heat transfer and transport of different fluids participating. Our results, experimental and numerical, show a good agreement according to the characteristic drying time scale. The results thus enable to estimate the impact of different mechanisms into drying process. Keywords: paper-drying process; free water; bound water; papermaking.


2000 ◽  
Vol 77 (11) ◽  
pp. 847-862 ◽  
Author(s):  
MRA Shegelski ◽  
M Reid ◽  
R Niebergall

We consider the motion of a cylinder with the same mass and sizeas a curling rock, but with a very different contact geometry.Whereas the contact area of a curling rock is a thin annulus havinga radius of 6.25 cm and width of about 4 mm, the contact area of the cylinderinvestigated takes the form of several linear segments regularly spacedaround the outer edge of the cylinder, directed radially outward from the center,with length 2 cm and width 4 mm. We consider the motion of this cylinderas it rotates and slides over ice having the nature of the ice surfaceused in the sport of curling. We have previously presented a physicalmodel that accounts for the motion of curling rocks; we extend this modelto explain the motion of the cylinder under investigation. In particular,we focus on slow rotation, i.e., the rotational speed of the contact areasof the cylinder about the center of mass is small compared to thetranslational speed of the center of mass.The principal features of the model are (i) that the kineticfriction induces melting of the ice, with the consequence that thereexists a thin film of liquid water lying between the contact areasof the cylinder and the ice; (ii) that the radial segmentsdrag some of the thin liquid film around the cylinder as it rotates,with the consequence that the relative velocity between the cylinderand the thin liquid film is significantly different than the relativevelocity between the cylinder and the underlying solid ice surface.Since it is the former relative velocity that dictates the nature of themotion of the cylinder, our model predicts, and observations confirm, thatsuch a slowly rotating cylinder stops rotating well before translationalmotion ceases. This is in sharp contrast to the usual case of most slowlyrotating cylinders, where both rotational and translational motion ceaseat the same instant. We have verified this prediction of our model bycareful comparison to the actual motion of a cylinder having a contactarea as described.PACS Nos.: 46.00, 01.80+b


1988 ◽  
Vol 55 (4) ◽  
pp. 975-980 ◽  
Author(s):  
H. Koguchi ◽  
M. Okada ◽  
K. Tamura

This paper reports on the instability for the meniscus of a thin film of a very viscous liquid between two tilted plates, which are separated at a constant speed with a tilt angle in the normal direction of the plates. The disturbances on the meniscus moving with movement of the plates are examined experimentally and theoretically. The disturbances are started when the velocity of movement of the plates exceeds a critical one. The wavelength of the disturbances is measured by using a VTR. The instability of the meniscus is studied theoretically using the linearized perturbation method. A simple and complete analytical solution yields both a stability criterion and the wave number for a linear thickness geometry. These results compared with experiments for the instability show the validity of the stability criterion and the best agreement is obtained with the wave number of maximum amplification.


2006 ◽  
Author(s):  
H. Lan ◽  
M. Friedrich ◽  
B. F. Armaly ◽  
J. A. Drallmeier

Measurements and predictions of three-dimensional shear driven thin liquid films by turbulent air flow in a duct are reported. FLUENT - CFD code is used to perform the numerical simulations and the Reynolds Averaged Navier-Stokes and continuity equations along with the Volume of Fluid (VOF) model and the realizable k-ε turbulence model are implemented for this task. Film thickness and width are reported as a function of air flow rate, liquid film volume flow rate and surface tension, and a comparison with preliminary measured results is made. The thickness of the shear driven liquid film is measured using an interferometric technique that makes use of the phase shift between the reflection of incident light from the top and bottom surfaces of the thin liquid film. The spatial resolution is determined based on the spot size of the incident light, which for the current configuration of the transmitting optics is approximately 10 microns. The resulting fringe pattern is imaged using a high-speed imaging camera operating at 2000 frames per second. The technique has proved successful in measuring thickness between 100 and 900 microns in these shear driven films. Simulation results reveal that higher gas flow velocity decreases the film thickness but increases its width, while higher liquid film flow rate increases the film thickness and increases its width. Reasonable comparison appears to exist between preliminary measured and simulated results.


2018 ◽  
Vol 851 ◽  
Author(s):  
Rajesh K. Bhagat ◽  
N. K. Jha ◽  
P. F. Linden ◽  
D. Ian Wilson

This study explores the formation of circular thin-film hydraulic jumps caused by the normal impact of a jet on an infinite planar surface. For more than a century, it has been believed that all hydraulic jumps are created due to gravity. However, we show that these thin-film hydraulic jumps result from energy loss due to surface tension and viscous forces alone. We show that, at the jump, surface tension and viscous forces balance the momentum in the liquid film and gravity plays no significant role. Experiments show no dependence on the orientation of the surface and a scaling relation balancing viscous forces and surface tension collapses the experimental data. A theoretical analysis shows that the downstream transport of surface energy is the previously neglected critical ingredient in these flows, and that capillary waves play the role of gravity waves in a traditional jump in demarcating the transition from the supercritical to subcritical flow associated with these jumps.


Author(s):  
S. B. Liang ◽  
G. P. Xu

Self-sustainable motions of the slug flow in oscillating heat pipes have been investigated in the paper. Thin film condensation in the capillary channels of the condenser of the oscillating heat pipes was studied. Instability of the thin liquid film on the characteristics of heat pipes was analysed. The extra thermal resistance caused by the thickness of the thin liquid film was taken into account for the numerical simulation of the oscillatory motions of the slug flow in the heat pipes. Saturated temperatures and pressures of the working fluid in the condenser were obtained. Thermoacoustic theory was applied to calculate heat transport through the adiabatic section of the heat pipes. Experimental studies were carried out to understand the heat transfer behaviours of heat pipes. One heat pipe with the working fluid of HFC-134a was evaluated. The heat pipe is made of aluminium plate and has the width of 50 mm and thickness of 1.9 mm. Numerical and experimental results relevant to the heat transport capability of the heat pipe were analysed and compared.


Soft Matter ◽  
2016 ◽  
Vol 12 (44) ◽  
pp. 9105-9114 ◽  
Author(s):  
Xurui Zhang ◽  
Plamen Tchoukov ◽  
Rogerio Manica ◽  
Louxiang Wang ◽  
Qingxia Liu ◽  
...  

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Kuldeep Singh ◽  
Medhat Sharabi ◽  
Richard Jefferson-Loveday ◽  
Stephen Ambrose ◽  
Carol Eastwick ◽  
...  

Abstract In the case of aero-engine, thin lubricating film servers dual purpose of lubrication and cooling. Prediction of dry patches or lubricant starved region in bearing or bearing chambers are required for safe operation of these components. In this work, thin liquid film flow is numerically investigated using the framework of the Eulerian thin film model (ETFM) for conditions, which exhibit partial wetting phenomenon. This model includes a parameter that requires adjustment to account for the dynamic contact angle. Two different experimental data sets have been used for comparisons against simulations, which cover a wide range of operating conditions including varying the flowrate, inclination angle, contact angle, and liquid–gas surface tension coefficient. A new expression for the model parameter has been proposed and calibrated based on the simulated cases. This is employed to predict film thickness on a bearing chamber which is subjected to a complex multiphase flow. From this study, it is observed that the proposed approach shows good quantitative comparisons of the film thickness of flow down an inclined plate and for the representative bearing chamber. A comparison of model predictions with and without wetting and drying capabilities is also presented on the bearing chamber for shaft speed in the range of 2500 RPM to 10,000 RPM and flowrate in the range of 0.5 liter per minute (LPM) to 2.5 LPM.


2014 ◽  
Vol 625 ◽  
pp. 517-521
Author(s):  
Nurhazwani Yusoff Azudin ◽  
Mohd Fadhil Majnis ◽  
Ahmad Abdul Latif ◽  
Syamsul Rizal Abd Shukor

A thin liquid film flow over horizontal spinning disk under influence of centrifugal field is one of the implementation and method in process intensification. Hydrodynamic studies and development of mechanistic model is desired to describe this film flow behaviours. CFD software package, Fluent® 6.3 was used to simulate a multiphase volume of fraction (VOF) model of this flow. Then, experiments were carried out in a spinning disk test rig with variable speed of spinning and results were compared with CFD simulation. The result obtained have showed that CFD model for thin liquid film thickness was in satisfactory agreement with the experimental results with R2 = 0.841 to 0.857.


Sign in / Sign up

Export Citation Format

Share Document