Analysis and Design of Segmented Dampers for Rotor Dynamic Control

1982 ◽  
Vol 104 (1) ◽  
pp. 84-90 ◽  
Author(s):  
D. L. Taylor ◽  
V. S. Fehr

Dampers have become of increasing importance in the control of shaft vibration of rotating equipment which must operate through one or more critical speeds. This paper presents the analytical results for the study of a new class of damper, the segmented film damper. A series of isolated segments of fluid are used rather than a continuous film as in the traditional squeeze film damper. This configuration provides energy dissipation through fluid viscosity within the film segments and through oriface flow in the supply and exit ports for each segment. The pressure distribution within an individual segment is developed on the basis of Reynolds equation with appropriate boundary conditions. The effects of various parameters are discussed in terms of this pressure distribution. The geometric effects of multiple segments are derived for both input, how shaft motion excites each segment, and output, how the segments’ pressure distributions combine to provide a net force. The damping force is shown to be linear for a wide range of operating conditions, speed and unbalance, and thus validly expressed in terms of a damping coefficient. Additionally, this class of damper is shown to have no radial stiffness. The limitations and implications for the designer are discussed in detail. A structured design procedure is given for the selection of parameter values, and a design example with numerical values is included.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Du ◽  
Zixin Xiong ◽  
Luis Delgado ◽  
Weizhi Liao ◽  
Joseph Peoples ◽  
...  

AbstractThermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.


Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3073
Author(s):  
Krzysztof Górecki ◽  
Małgorzata Górecka ◽  
Paweł Górecki

This paper proposes a model of an electrolyser in the form of a subcircuit dedicated for SPICE. It takes into account both the electric static and dynamic properties of the considered device and is devoted to the optimisation of the parameters of the signal feeding this electrolyser, making it possible to obtain a high productivity and efficiency of the electrolysis process. Parameter values the describing current-voltage characteristics of the electrolyser take into account the influence of the concentration of the potassium hydroxide (KOH) solution. A detailed description of the structure and all the components of this model is included in the paper. The correctness of the elaborated model is verified experimentally in a wide range of changes in the value of the feeding current and concentration of the KOH solution. Some computations illustrating the influence of the amplitude, average value, duty factor, and frequency of feeding current on the productivity and efficiency of the electrolysis process are performed. On the basis of the obtained results of the investigations, some recommendations for the operating conditions of electrolysers are formulated.


1983 ◽  
Vol 105 (3) ◽  
pp. 487-494 ◽  
Author(s):  
M. D. Rabinowitz ◽  
E. J. Hahn

Assuming central preloading, operation below the second bending critical speed, and full film lubrication, this paper presents a theoretical model which allows one, with minimum computation, to design squeeze film damped rotors under conditions of high unbalance loading. Closed form expressions are derived for the maximum vibration amplitudes pertaining to optimally damped conditions. The resulting vibration amplitude and transmissibility data of design interest are presented for a wide range of practical operating conditions on a single chart. It can be seen that for a given rotor, the lighter the bearing the more easily one can satisfy design constraints relating to allowable rotor vibration levels and lubricant supply pressure requirements. The data presented are shown to be applicable to a wide variety of rotors, and a recommended procedure for optimal design is outlined.


1999 ◽  
Vol 121 (4) ◽  
pp. 703-709 ◽  
Author(s):  
S. E. Diaz ◽  
L. A. San Andre´s

Squeeze film dampers (SFDs) are effective means to reduce vibrations and to suppress instabilities in rotor-bearing systems. However, at operating conditions while traversing critical speeds with large orbital whirl motions, ingestion and entrapment of air into the thin lands of SFDs generates a bubbly mixture (air in lubricant) that is known to reduce the dynamic film pressures and the overall damping capability. This pervasive phenomenon lacks proper physical understanding and sound analytical modeling. An experimental investigation to quantify the forced performance of a SFD operating with a controlled bubbly mixture is detailed. Tests are conducted in a constrained circular orbit SFD to measure the dynamic squeeze film pressures and journal motion at two whirl frequencies (8.33 and 16.67 Hz) as the air content in the mixture increases from 0 percent to 100 percent. The analysis of period-averaged film pressures reveals a zone of uniform low pressure of magnitude equal to the discharge pressure, independently of the mixture composition. The uniform pressure zone extends as the mixture void fraction increases. Radial and tangential film forces are estimated from the dynamic pressures at two axial locations of measurement. The tangential (damping) force decreases proportionally with the mixture volume fraction, while a radial hydrostatic force remains nearly invariant. The experimental results quantify effects previously known by qualitative description only, thus providing a benchmark towards the development of sound theoretical models.


2002 ◽  
Vol 1802 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Alexander Skabardonis

The operation of freeway weaving sections is characterized by intense lane-changing maneuvers and complex vehicle interactions that often create bottlenecks along freeway facilities. The CORSIM microscopic simulation model was applied to simulate the operation of eight realworld weaving sites in California under a wide range of operating conditions. The results indicate that CORSIM with default parameter values underpredicts the speeds in the weaving section by about 19% on average. Numerous simulation runs were made with different values of the model parameters. The following parameters were found to significantly affect the CORSIM results: ( a) car-following sensitivity factor, ( b) lane-changing aggressiveness factor, and ( c) percentage of freeway through vehicles that yield to merging traffic. The calibrated CORSIM model reasonably replicated observed traffic operations at all test sites. The predicted average speeds were within ±5 mph for most test sites. Good agreement between measured and predicted values was obtained for all the combinations of design characteristics and demand patterns.


Author(s):  
Sergio E. Diaz ◽  
Luis A. San Andrés

Squeeze film dampers (SFDs) are effective means to reduce vibrations and to suppress instabilities in rotor-bearing systems. However, at operating conditions while traversing critical speeds with large orbital whirl motions, ingestion and entrapment of air into the thin lands of SFDs generates a bubbly mixture (air in lubricant) which is known to reduce the dynamic film pressures and the overall damping capability. This pervasive phenomenon lacks proper physical understanding and sound analytical modeling. An experimental investigation to quantify the forced performance of a SFD operating with a controlled bubbly mixture is detailed. Tests are conducted in a constrained circular orbit SFD to measure the dynamic squeeze film pressures and journal motion at two whirl frequencies (8.33 and 16.67 Hz) as the air content in the mixture increases from 0% to 100%. The analysis of period-averaged film pressures reveals a zone of uniform low pressure of magnitude equal to the discharge pressure, independently of the mixture composition. The uniform pressure zone extends as the mixture void fraction increases. Radial and tangential film forces are estimated from the dynamic pressures at two axial locations of measurement. The tangential (damping) force decreases proportionally with the mixture volume fraction, while a radial hydrostatic force remains nearly invariant. The experimental results quantify effects previously known by qualitative description only, thus providing a benchmark towards the development of sound theoretical models.


Author(s):  
Weidong Wang ◽  
Jianyuan Jia

Based on the equations of gap flow and squeezed flow, the solution for viscosity amendment with slip-flow boundary condition is presented for microfluids damping force on perforated disks with one centre hole, moving along its axial direction in microfluids. The correlation between the kinetic damping of the perforated disk and the parameters, such as the gap height, the radius of the center hole and the thickness of disk, is investigated and obtained. Also an analytical expression of the damping composed of slide film damping and squeezed film damping is given for this kind of perforated disks. Having compared with the numerical solution from FEM method, the analytical solutions match well with those from FEM method. It shows that the microfluids damping on micro-disk has relationship with the surface characteristics of solid wall. Through amending the momentum accommodation coefficient, the accurate effective viscosity can be obtained. Thereby the microfluids damping force on the moving object can be calculated correctly. A simple computation method is presented for analysis and design on microfluids damping of a perforated disk with one centre hole.


Author(s):  
Jaroslav Zapoměl ◽  
Petr Ferfecki

Unbalance of rotating parts is the main source of excitation of lateral oscillations of rotors, of increase of time varying forces transmitted to the rotor stationary part, and of energy losses generated in the support elements. The technological solution, which makes it possible to reduce these undesirable effects, consists in adding damping devices to the rotor supports. A simple dynamical analysis shows that to achieve their optimum performance their damping effect must be adaptable to the current operating speed. This is enabled by magnetorheological squeeze film dampers, the damping effect of which is controlled by the change of magnetic flux passing through the lubricating layer. The developed mathematical model of the magnetorheological squeeze film damper is based on assumptions of the classical theory of lubrication and on representing the magnetorheological oil by a bilinear material. The results of the carried out computational simulations show that the appropriate control of the damping force makes it possible to minimize the energy losses in a wide range of operating speeds. The development of a new mathematical model of the magnetorheological squeeze film damper, the extension of computational procedures, in which this model has been implemented, the confirmation that the magnetorheological dampers make it possible to reduce energy losses in the rotor supports, and learning more on influence of controllable dampers on behavior of rotor systems are the principal contributions of the presented paper. The carried out research highlights the possibility of reducing the energy losses by means of employing magnetorheological squeeze film dampers, which represents a new field of their prospective application.


1967 ◽  
Vol 89 (4) ◽  
pp. 409-415 ◽  
Author(s):  
J. O’Donoghue ◽  
D. K. Brighton ◽  
C. J. K. Hooke

This paper presents a solution to the problem of hydrodynamic lubrication of journal bearings taking into account the elastic distortions of the shaft and the bearing. The exact solution for determining the elastic deformation for a given pressure distribution around a bearing is given, together with the reiterative procedure adopted to find the pressure distribution which satisfies both the hydrodynamic and elastic requirements of the system. Results are given which have been derived for a material with a Poisson’s ratio of 0.28, but other values such as 0.33 do not incur substantial errors. The results can be applied to a wide range of operating conditions using the nondimensional group of terms suggested in the paper. The bearing is assumed to be infinite in length, and infinite in thickness. The latter assumption is shown to be valid for a particular case where the outside diameter of the bearing shell is 3.5 times the shaft diameter. A further assumption in the calculation is a condition of constant viscosity of the lubricant existing around the bearing.


Sign in / Sign up

Export Citation Format

Share Document