Three-Dimensional Balancing of the Stiller-Smith Mechanism for Application to an Eight-Cylinder IC Engine

1989 ◽  
Vol 111 (4) ◽  
pp. 459-464 ◽  
Author(s):  
J. E. Smith ◽  
A. D. McKisic ◽  
R. Craven ◽  
J. Prucz

The Stiller-Smith Mechanism employs a double cross-slider to convert linear reciprocating motion into rotational motion. It has previously been shown that a four-cylinder configuration utilizing this motion conversion device can be balanced in two dimensions. The inherent planar nature of this mechanism makes it possible to produce a compact, eight-cylinder configuration for use as an internal combustion engine which is balanced in three dimensions. This paper develops and presents the necessary requirements for such a balanced engine. Relative merits of various configurations are discussed and analytical results of different balancing schemes are presented.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wail Aladayleh ◽  
Ali Alahmer

This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.


Author(s):  
Obolo Olupitan Emmanuel

Gas Turbine is one of the machines that use the thermodynamic principle converting fuel energy to mechanical energy. It is an internal combustion engine. Also, designed to accelerate a stream of gas, which is used to produce a reactive thrust to propel an object or to produce mechanical power that turns a load. It functions in the same way as the internal combustion engine. It sucks in air from the atmosphere, and compress it. The fuel (gas) is injected and ignited (spark plug). The gases expand doing work and finally exhausts outside. Instead of reciprocating motion, the gas turbine uses a rotary motion throughout, and that is the only difference.


Author(s):  
Qiuyu Zheng ◽  
Xu Wang ◽  
Yi Liu ◽  
Feng Jiang ◽  
Tianqi Liu

With the rapid scale expansion of the first generation of bio-liquid fuels, its impact on the prices of agricultural products, food security and the environment has begun to emerge and attracted extensive attention from governments and academia. A new multi-dimensional model of biodiesel spray combustion in an internal combustion (IC) engine is designed. Firstly, the BP neural network mining model is used to extract the spray combustion data of the IC engine. Then, based on the combustion data of biodiesel load in an internal combustion engine, burning rate and heat release, the principle of spray combustion of biodiesel is analyzed. Finally, from the two aspects of gas-phase control and liquid phase control, a multi-dimensional model of biodiesel spray combustion in IC engine is established and the spray combustion characteristics of biodiesel in IC engine are analyzed. The research results show that the model can effectively analyze the effect of load and fuel temperature on the spray combustion characteristics of biodiesel and the results of the model are almost the same as the actual data and the calculation accuracy is high. It is an effective method for studying the spray combustion characteristics of biodiesel.


1993 ◽  
Vol 115 (4) ◽  
pp. 694-701 ◽  
Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Numerical simulation of flow, combustion, heat release rate, and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data show that for good agreement with experimental results on the peak pressure and the rate of pressure rise as a function of crank angle, spark ignition energy and local cylinder pressure must be properly modeled. The results obtained for NO and CO showed features which are qualitatively in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multicomponent chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2013 ◽  
Vol 787 ◽  
pp. 704-710 ◽  
Author(s):  
Kellaci Ahmed ◽  
Khelidj Benyoucef ◽  
Mazouzi Redha ◽  
Lounis Mourad

This investigation is concerned with the elastohydrodynamic lubrication of the piston skirt / cylinder link of an internal combustion engine. In such compliant structures, the thickness of the lubricant film depends not only on the elastic deformation elements of the mechanism but also on their profiles. We have developed a computer program to study the effect of the profile of the piston skirt on the lubricant film. This program is based on a two-dimensional description of the lubricant film flow and a three-dimensional deformation of solids. The Reynolds equation defines the behavior of hydrodynamic film of oil in the liaison piston skirt / cylinder, and the equations of static and elastic equilibrium quantify the behavior of the structure. These Equations are solved numerically by using the finite differences method.


Author(s):  
Jainil Darji

Connecting rod is the vital part of the Internal Combustion Engine (IC Engine) that connects the piston and crankshaft by means of various pins. In addition, it transmits the power and converts the reciprocating movement to the rotational motion. The present work is based on detailing the connecting rod origin to the current researches or study done on it. This paper states the different kinds of materials used to manufacture the connecting rod. Besides, the kind of failure of the connecting rod is also explained in the current work. The factor of design of connecting rod is explained using equations and cross-section. Many researchers are studying the and carrying their research on connecting rod, that is also highlighted in this article.


2011 ◽  
Vol 144 (1) ◽  
pp. 37-48
Author(s):  
Karol CUPIAŁ ◽  
Wojciech TUTAK ◽  
Arkadiusz JAMROZIK ◽  
Arkadiusz KOCISZEWSKI

The results of numerical analysis the combustion process in turbocharged CI engine 6CT107 are presented in the paper. Engine was installed on the ANDORIA’s power generator of 100 kVA/80 kW. The results of modelling the combustion process for different angle setting fuel injection, compared with the results obtained by indicating the real engine. Numerical analysis was performed in two programs, designed for three-dimensional modelling of the thermal cycle the piston internal combustion engine, namely AVL FIRE and the KIVA-3V.


2020 ◽  
Vol 39 (1) ◽  
pp. 161-172 ◽  
Author(s):  
A.E. Ikpe ◽  
I.B. Owunna

In this study, a two stroke internal combustion engine was successfully modeled as a closed cycle with the intake, compression, expansion and exhaust processes considered in two strokes of the reciprocating piston. The in-cylinder combusted gases with respect to air-fuel mixture of 14.4:1 in the two stroke engine model were analyzed, showing the dynamics of the combusted gases, the flame pressure and temperature trajectories. It was observed that provided compression and expansion takes place at air-fuel mixture near ideal condition (14.7:1), the combusted gas temperature which occurred in the range of 293.92-3000.60 K is directly proportional to the cylinder gas pressure which occurred in the range of 60.76-80.20 bar. With a heat transfer coefficient of 581.236 W/m2K, the maximum temperature of the IC engine material was found to be 2367.56K at equilibrium and the maximum shear stress was found to be 176 x 102 MPa (1.76 x 105 bar). The 14.4:1 air-fuel mixture implies that 26% O2, 73% N2 and 1% trace gases are the in-cylinder air constituent that will react with 1 mole of hydrocarbon to form the combusted products of 96.2% CO2, 3.2% H2O and 0.6% N2. This will vary in conditions where the air-fuel mixture changes. Keywords: Modelling, Gas dynamics, Two stroke, IC engine, Air-fuel mixture.


Author(s):  
Anuj Dixit

The piston of the internal combustion engine is one of the most complex parts among all engine components. During the operation, the pistons of IC engines are typically subjected to high loading and wearing. To withstand these, they require high mechanical properties and excellent tribological properties. This chapter aims to compare the mechanical as well as tribological properties of silica-gel-reinforced aluminium composite with aluminium alloy, which is used in manufacturing of piston of IC engine. Initially silica-gel-reinforced aluminium composite was fabricated with base material aluminium and six different percentages of silica gel reinforcement by stir casting method. After that, mechanical and tribological properties of silica-gel-reinforced aluminium composite were estimated and the tremendous mechanical and tribological properties among all percentages by different optimization techniques were found. The authors then compared the admirable properties of aluminium composite with aluminium alloy for manufacturing of piston of IC engine.


Sign in / Sign up

Export Citation Format

Share Document