On the Frequency Response of Viscous Compressible Fluids as a Function of the Stokes Number

1970 ◽  
Vol 92 (2) ◽  
pp. 333-347 ◽  
Author(s):  
F. R. Goldschmied

Air, carbon dioxide, and helium test data are presented for the experimental verification of Iberall’s analysis of the dynamic pressure response of viscous compressible fluids in rigid tubes with deadened volume termination against oscillatory frequency. A graphical display is given of numerical solutions of Iberall’s theory over a wide range as a function of the Stokes number and of a dimensionless frequency. Rapid engineering solutions are presented for the following problems: Given a tube, a chamber volume, and a fluid, determine the maximum frequency to be transmitted at ±10 percent amplitude distortion. Given a tube, a chamber volume, and a fluid, sketch the dynamic pressure response curve. Given a chamber volume, a fluid, and a specified frequency to be transmitted within ±10 percent amplitude distortion, plot allowable tube length against tube diameter.

2021 ◽  
Author(s):  
Kamil Urbanowicz ◽  
Haixiao Jing ◽  
Anton Bergant ◽  
Michał Stosiak ◽  
Marek Lubecki

Abstract In this paper analytical formulas of water hammer known from the literature are simplified to the shortest possible mathematical form based on dimensionless parameters: dimensionless time, water hammer number, etc. Novel formulas are determined, for example for the flow velocity and wall shear stress in the Muto and Takahashi solution. A complete solution in the Laplace domain is presented and the problem of its inverse transformation is discussed. A series of comparative studies of analytical solutions with numerical solutions and the results of experimental research were carried out. The compared analytical solutions, taking into account the frequency-dependent nature of the hydraulic resistances, show very good agreement with the experimental results in a wide range of water hammer numbers, in particular when Wh ≤ 0.1. On the other hand, it turned out that the analytical model based on the quasi-steady friction in great detail simulates dynamic pressure response in systems characterized by a high value of the water hammer number Wh ≥ 0.5.


Author(s):  
Peter J. Bryant ◽  
John W. Miles

AbstractWe consider the phase-locked solutions of the differential equation governing planar motion of a weakly damped pendulum driven by horizontal, periodic forcing of the pivot with maximum acceleration εg and dimensionless frequency ω. Analytical solutions for symmetric oscillations at smaller values of ε are continued into numerical solutions at larger values of ε. A wide range of stable oscillatory solutions is described, including motion that is symmetric or asymmetric, downward or inverted, and at periods equal to the forcing period T ≡ 2π/ω or integral multiples thereof. Stable running oscillations with mean angular velocity pω/q, where p and q are integers, are investigated also. Stability boundaries are calculated for swinging oscillations of period T, 2T and 4T; 3T and 6T; and for running oscillations with mean angular velocity ω. The period-doubling cascades typically culminate in nearly periodic motion followed by chaotic motion or some independent periodic motion.


Author(s):  
M.G. Yagodin ◽  
E.I. Starovoytenko

The equipment for the production of wide range of metal powders purposed for powder metallurgy is described. The possibility for producing of powders by the plasma centrifugal spraying is considered taking into account the gas dynamic pressure. The calculated data on the powder size for different materials are given.


Author(s):  
А.В. ГУКАСЯН ◽  
В.С. КОСАЧЕВ ◽  
Е.П. КОШЕВОЙ

Получено аналитическое решение двумерного слоистого напорного течения в канале шнека, позволяющее моделировать расходно-напорные характеристики прямоугольных каналов шнековых прессов с учетом гидравлического сопротивления формующих устройств и рассчитывать расходно-напорные характеристики экструдеров в широком диапазоне геометрии витков как в поперечном сечении, так и по длине канала. Obtained the analytical solution of two-dimensional layered pressure flow in the screw channel, allow to simulate the flow-dynamic pressure characteristics of rectangular channels screw presses taking into account the hydraulic resistance of the forming device and calculate the mass flow-dynamic pressure characteristics of the extruders in a wide range of the geometry of the coils, as in its cross section and along the length of the channel.


Author(s):  
Dilip Prasad

Windmilling requirements for aircraft engines often define propulsion and airframe design parameters. The present study is focused is on two key quantities of interest during windmill operation: fan rotational speed and stage losses. A model for the rotor exit flow is developed, that serves to bring out a similarity parameter for the fan rotational speed. Furthermore, the model shows that the spanwise flow profiles are independent of the throughflow, being determined solely by the configuration geometry. Interrogation of previous numerical simulations verifies the self-similar nature of the flow. The analysis also demonstrates that the vane inlet dynamic pressure is the appropriate scale for the stagnation pressure loss across the rotor and splitter. Examination of the simulation results for the stator reveals that the flow blockage resulting from the severely negative incidence that occurs at windmill remains constant across a wide range of mass flow rates. For a given throughflow rate, the velocity scale is then shown to be that associated with the unblocked vane exit area, leading naturally to the definition of a dynamic pressure scale for the stator stagnation pressure loss. The proposed scaling procedures for the component losses are applied to the flow configuration of Prasad and Lord (2010). Comparison of simulation results for the rotor-splitter and stator losses determined using these procedures indicates very good agreement. Analogous to the loss scaling, a procedure based on the fan speed similarity parameter is developed to determine the windmill rotational speed and is also found to be in good agreement with engine data. Thus, despite their simplicity, the methods developed here possess sufficient fidelity to be employed in design prediction models for aircraft propulsion systems.


Author(s):  
Jean-Luc Riverin ◽  
Michel J. Pettigrew

Severe in-plane vibrations were observed in a series of 20-mm dia. PVC vertical U-tubes of different elbow geometries subjected to air-water internal flow. An experimental study was undertaken to investigate the excitation mechanism. Vibration response, excitation forces and fluctuating properties of two-phase flow were measured over a wide range of flow conditions. The experimental results show that the observed vibrations are due to a resonance phenomenon between periodic momentum flux fluctuations of two-phase flow and the first modes of U-tubes. The excitation forces consist of a combination of narrow-band and periodic components, with a predominant frequency that increases proportionally to flow velocity. For a given void fraction, the force spectra for various flow velocities and elbow geometries coincide generally well on a plot of the normalized power spectral density as a function of a dimensionless frequency. The predominant frequencies of excitation agree with recent results on the characteristics of periodic structures in two-phase flow.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Dilip Prasad

Windmilling requirements for aircraft engines often define propulsion and airframe design parameters. The present study is focused on two key quantities of interest during windmill operation: fan rotational speed and stage losses. A model for the rotor exit flow is developed that serves to bring out a similarity parameter for the fan rotational speed. Furthermore, the model shows that the spanwise flow profiles are independent of the throughflow, being determined solely by the configuration geometry. Interrogation of previous numerical simulations verifies the self-similar nature of the flow. The analysis also demonstrates that the vane inlet dynamic pressure is the appropriate scale for the stagnation pressure loss across the rotor and splitter. Examination of the simulation results for the stator reveals that the flow blockage resulting from the severely negative incidence that occurs at windmill remains constant across a wide range of mass flow rates. For a given throughflow rate, the velocity scale is then shown to be that associated with the unblocked vane exit area, leading naturally to the definition of a dynamic pressure scale for the stator stagnation pressure loss. The proposed scaling procedures for the component losses are applied to the flow configuration of Prasad and Lord (2010). Comparison of simulation results for the rotor-splitter and stator losses determined using these procedures indicates very good agreement. Analogous to the loss scaling, a procedure based on the fan speed similarity parameter is developed to determine the windmill rotational speed and is also found to be in good agreement with engine data. Thus, despite their simplicity, the methods developed here possess sufficient fidelity to be employed in design prediction models for aircraft propulsion systems.


2007 ◽  
Vol 129 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Jun Wen ◽  
M. M. Khonsari

An analytical approach for treating problems involving oscillatory heat source is presented. The transient temperature profile involving circular, rectangular, and parabolic heat sources undergoing oscillatory motion on a semi-infinite body is determined by integrating the instantaneous solution for a point heat source throughout the area where the heat source acts with an assumption that the body takes all the heat. An efficient algorithm for solving the governing equations is developed. The results of a series simulations are presented, covering a wide range of operating parameters including a new dimensionless frequency ω¯=ωl2∕4α and the dimensionless oscillation amplitude A¯=A∕l, whose product can be interpreted as the Peclet number involving oscillatory heat source, Pe=ω¯A¯. Application of the present method to fretting contact is presented. The predicted temperature is in good agreement with published literature. Furthermore, analytical expressions for predicting the maximum surface temperature for different heat sources are provided by a surface-fitting method based on an extensive number of simulations.


2020 ◽  
Vol 6 (4) ◽  
pp. 345
Author(s):  
Victor Pereira Rochetti ◽  
Rodrigo Rollin-Pinheiro ◽  
Evely Bertulino de Oliveira ◽  
Mariana Ingrid Dutra da Silva Xisto ◽  
Eliana Barreto-Bergter

Infections caused by Scedosporium species present a wide range of clinical manifestations, from superficial to disseminated, especially in immunocompromised patients. Glucosylceramides (GlcCer) are glycosphingolipids found on the fungal cell surface and play an important role in growth and pathogenicity processes in different fungi. The present study aimed to evaluate the structure of GlcCer and its role during growth in two S. aurantiacum isolates. Purified GlcCer from both isolates were obtained and its chemical structure identified by mass spectrometry. Using ELISA and immunofluorescence techniques it was observed that germination and NaOH-treatment of conidia favor GlcCer exposure. Monoclonal anti-GlcCer antibody reduced germination when cultivated with the inhibitor of melanin synthesis tricyclazole and also reduced germ tube length of conidia, both cultivated or not with tricyclazole. It was also demonstrated that anti-GlcCer altered lipid rafts organization, as shown by using the fluorescent stain filipin, but did not affect the susceptibility of the cell surface to damaging agents. Anti-GlcCer reduced total biomass and viability in biofilms formed on polystyrene plates. In the presence of anti-GlcCer, germinated S. aurantiacum conidia and biofilms could not adhere to polystyrene with the same efficacy as control cells. These results highlight the relevance of GlcCer in growth processes of S. aurantiacum.


1970 ◽  
Vol 7 ◽  
pp. 60-64 ◽  
Author(s):  
Ruchi Khare ◽  
Vishnu Prasad Prasad ◽  
Sushil Kumar

The testing of physical turbine models is costly, time consuming and subject to limitations of laboratory setup to meet International Electro technical Commission (IEC) standards. Computational fluid dynamics (CFD) has emerged as a powerful tool for funding numerical solutions of wide range of flow equations whose analytical solutions are not feasible. CFD also minimizes the requirement of model testing. The present work deals with simulation of 3D flow in mixed flow (Francis) turbine passage; i.e., stay vane, guide vane, runner and draft tube using ANSYS CFX 10 software for study of flow pattern within turbine space and computation of various losses and efficiency at different operating regimes. The computed values and variation of performance parameters are found to bear close comparison with experimental results.Key words: Hydraulic turbine; Performance; Computational fluid dynamics; Efficiency; LossesDOI: 10.3126/hn.v7i0.4239Hydro Nepal Journal of Water, Energy and EnvironmentVol. 7, July, 2010Page: 60-64Uploaded date: 31 January, 2011


Sign in / Sign up

Export Citation Format

Share Document