Electromigration Simulation for Metal Lines

2010 ◽  
Vol 132 (1) ◽  
Author(s):  
JianPing Jing ◽  
Lihua Liang ◽  
Guang Meng

As the electronics industry continues to push for high performance and miniaturization, the demand for higher current densities, which may cause electromigration failures in an IC, interconnects. Electromigration is a phenomenon that metallic atoms constructing the line are transported by electron wind. The damage induced by electromigration appears as the formation of voids and hillocks. A numerical simulation method for electromigration void incubation, and afterwards, void propagation, based on commercial software ANSYS Multiphysics and FORTRAN code, is presented in this paper. The electronic migration formulation considering the effects of the electron wind force, stress gradients, temperature gradients, and the atomic concentration gradient has been developed for the electromigration failure mechanisms. Due to introducing the atomic concentration gradient driving force in atomic flux formulations, the conventional atomic flux divergence method is no longer valid in electromigration (EM) simulation. Therefore, the corresponding EM atomic concentration redistribution algorithm is proposed using FORTRAN code. Finally, the comparison of voids generation through the numerical example of a standard wafer electromigration accelerated test (SWEAT) structure with the measurement result is discussed.

2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 241 ◽  
Author(s):  
Arthur Rosa ◽  
Matheus Silva ◽  
Marcos Campos ◽  
Renato Santana ◽  
Welbert Rodrigues ◽  
...  

In this work, a new real-time Simulation method is designed for nonlinear control techniques applied to power converters. We propose two different implementations: in the first one (Single Hardware in The Loop: SHIL), both model and control laws are inserted in the same Digital Signal Processor (DSP), and in the second approach (Double Hardware in The Loop: DHIL), the equations are loaded in different embedded systems. With this methodology, linear and nonlinear control techniques can be designed and compared in a quick and cheap real-time realization of the proposed systems, ideal for both students and engineers who are interested in learning and validating converters performance. The methodology can be applied to buck, boost, buck-boost, flyback, SEPIC and 3-phase AC-DC boost converters showing that the new and high performance embedded systems can evaluate distinct nonlinear controllers. The approach is done using matlab-simulink over commodity Texas Instruments Digital Signal Processors (TI-DSPs). The main purpose is to demonstrate the feasibility of proposed real-time implementations without using expensive HIL systems such as Opal-RT and Typhoon-HL.


Author(s):  
Mohammad Rustam M. L. ◽  
F. Danang Wijaya

Under various external conditions, grid connected PV system performance is strongly affected by the topology that is used to connect a PV system with grid. This research aims to design a multistring based converter topology for three-phase grid connected 200 kW PV system that has a high performance in various operating conditions. Research was done by a simulation method using Matlab-Simulink with performance being evaluated including the generated power, efficiency, power quality in accordance with grid requirements, as well as the power flow. In the simulation, multistring converter topology was designed using two dc-dc boost multistring converters connected in parallel to a centralized of three-phase three-level NPC inverter with the size of the string being shorter and more parallel strings as well as the maximum voltage of the PV array of 273.5 V close to dc voltage reference of 500 V. Each dc-dc boost multistring converter have individual MPPT controllers. The simulation results showed that this multistring converter topology had a high performance in various operating conditions. This due to more power generated by the NPC inverter (> 190 kW) at the time of high power generation on the STC conditions (1000 W/m2, 25 oC), the lowest efficiency of the total system is 95.08 % and the highest efficiency of the total system is 99.4 %, the quality of the power generated in accordance with the requirements of grid, as well as the inverter put more active power to the grid and less reactive power to the grid. The response of the inverter slightly worse for loads with greater reactive power and unbalanced.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
André Weber

Abstract Solid Oxide Cells (SOCs) have gained an increasing interest as electrochemical energy converters due to their high efficiency, fuel flexibility and ability of reversible fuel cell/electrolysis operation. During the development process as well as in quality assurance tests, the performance of single cells and cell stacks is commonly evaluated by means of current/voltage- (CV-) characteristics. Despite of the fact that the measurement of a CV-characteristic seems to be simple compared to more complex, dynamic methods as electrochemical impedance spectroscopy or current interrupt techniques, the resulting performance strongly depends on the test setup and the chosen operating conditions. In this paper, the impact of different single cell testing environments and operating conditions on the CV-characteristic of high performance cells is discussed. The influence of cell size, contacting and current collection, contact pressure, fuel flow rate and composition on the achievable cell performance is presented and limitations arising from the test bed and testing conditions will be pointed out. As today’s high performance cells are capable of delivering current densities of several ampere per cm2 a special emphasis will be laid on single cell testing in this current range.


2012 ◽  
Vol 616-618 ◽  
pp. 2013-2016
Author(s):  
Chao Fan Sun ◽  
Xing Lu Yu ◽  
Xin Feng Long ◽  
Bo Lou ◽  
De Bo Li

Numerical simulation method was used in this paper and 3-D structure of model was established with Pro/Engineering. It is evident that the efficiency of electric-bag is related to internal fluid field. The internal fluid field characteristics (pressure field, velocity field, turbulence field and particle tracks) are obtained by the numerical simulation soft called Fluent, the result show that airflow distribution could be improved obviously by the flow deflectors in electrostatic precipitation area. And the distribution of DPM in filter area is non uniform, which would lead to various damage on bags and affect the operation of electrostatic fabric filter. All these work have important significance for the study of new dust removal technology, developments of high performance precipitator, reduction of dust pollution and control of air pollution as well.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Kenji Ono ◽  
Takanori Uchida

It is important to develop a reliable and high-throughput simulation method for predicting airflows in the installation planning phase of windmill power plants. This study proposes a two-stage mesh generation approach to reduce the meshing cost and introduces a hybrid parallelization scheme for atmospheric fluid simulations. The meshing approach splits mesh generation into two stages: in the first stage, the meshing parameters that uniquely determine the mesh distribution are extracted, and in the second stage, a mesh system is generated in parallel via an in situ approach using the parameters obtained in the initialization phase of the simulation. The proposed two-stage approach is flexible since an arbitrary number of processes can be selected at run time. An efficient OpenMP-MPI hybrid parallelization scheme using a middleware that provides a framework of parallel codes based on the domain decomposition method is also developed. The preliminary results of the meshing and computing performance show excellent scalability in the strong scaling test.


1994 ◽  
Vol 338 ◽  
Author(s):  
J. J. Clement ◽  
C. V. Thompson ◽  
A. Enver

ABSTRACTAtomic transport due to electromigration in interconnect lines in integrated circuits depends strongly on temperature. Therefore temperature nonuniformities can create sites of atomic flux divergence resulting in material accumulation or depletion leading to failure. The mechanical stress which will evolve at the sites of material flux divergence will oppose the electromigration driving force. A model is developed to describe the stress evolution during electromigration in the presence of temperature nonuniformnities. Solutions of the differential equations describing the electromigration-induced stress buildup are calculated numerically. The solutions are compared to experimental data in the literature.


2005 ◽  
Vol 483-485 ◽  
pp. 1015-1020 ◽  
Author(s):  
Giuseppe Bertuccio ◽  
Simona Binetti ◽  
S. Caccia ◽  
R. Casiraghi ◽  
Antonio Castaldini ◽  
...  

High performance SiC detectors for ionising radiation have been designed, manufactured and tested. Schottky junctions on low-doped epitaxial 4H-SiC with leakage current densities of few pA/cm2 at room temperature has been realised at this purpose. The epitaxial layer has been characterised at different dose of radiations in order to investigate the SiC radiation hardness. The response of the detectors to alpha and beta particle and to soft X-ray have been measured. High energy resolution and full charge collection efficiency have been successfully demonstrated.


RSC Advances ◽  
2014 ◽  
Vol 4 (108) ◽  
pp. 63586-63595 ◽  
Author(s):  
Shengwei Deng ◽  
Yongmin Huang ◽  
Shouhong Xu ◽  
Shaoliang Lin ◽  
Honglai Liu ◽  
...  

A sequential mesoscale simulation method was adopted to formulate elastomeric nanocomposites with desired macroscopic mechanical responses.


Sign in / Sign up

Export Citation Format

Share Document