A Coordinate Frame Useful for Rigid-Body Displacement Metrics

2010 ◽  
Vol 2 (4) ◽  
Author(s):  
Venkatesh Venkataramanujam ◽  
Pierre M. Larochelle

This paper presents the definition of a coordinate frame, entitled the principal frame (PF), that is useful for metric calculations on spatial and planar rigid-body displacements. Given a set of displacements and using a point mass model for the moving rigid-body, the PF is determined from the associated centroid and principal axes. It is shown that the PF is invariant with respect to the choice of fixed coordinate frame as well as the system of units used. Hence, the PF is useful for left invariant metric computations. Three examples are presented to demonstrate the utility of the PF.

1996 ◽  
Vol 172 ◽  
pp. 309-320
Author(s):  
S.A. Klioner

We consider rotational motion of an arbitrarily composed and shaped, deformable weakly self-gravitating body being a member of a system of N arbitrarily composed and shaped, deformable weakly self-gravitating bodies in the post-Newtonian approximation of general relativity. Considering importance of the notion of angular velocity of the body (Earth, pulsar) for adequate modelling of modern astronomical observations, we are aimed at introducing a post-Newtonian-accurate definition of angular velocity. Not attempting to introduce a relativistic notion of rigid body (which is well known to be ill-defined even at the first post-Newtonian approximation) we consider bodies to be deformable and introduce the post-Newtonian generalizations of the Tisserand axes and the principal axes of inertia.


Author(s):  
Venkatesh Venkataramanujam ◽  
Pierre Larochelle

There are various useful metrics for finding the distance between two points in Euclidean space. Metrics for finding the distance between two rigid body locations in Euclidean space depend on both the coordinate frame and units used. A metric independent of these choices is desirable. This paper presents a metric for a finite set of rigid body displacements. The methodology uses the principal frame (PF) associated with the finite set of displacements and the polar decomposition to map the homogenous transform representation of elements of the special Euclidean group SE(N-1) onto the special orthogonal group SO(N). Once the elements are mapped to SO(N) a bi-invariant metric can then be used. The metric obtained is thus independent of the choice of fixed coordinate frame i.e. it is left invariant. This metric has potential applications in motion synthesis, motion generation and interpolation. Three examples are presented to illustrate the usefulness of this methodology.


2004 ◽  
Vol 126 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Johannes K. Eberharter ◽  
Bahram Ravani

One hundred years ago, Eduard Study introduced a very elegant method to describe a rigid body displacement in three-space. He mapped each position of a rigid body onto a point on a quadric, now called the Study quadric. This quadric is a six-dimensional rational hyper-surface, embedded in a seven-dimensional projective real space, called Study’s soma space. More than half a century later Ravani and Roth reconfigured Study’s soma space into a three-dimensional dual projective space, and defined a geometric metric for rigid body displacements. Here, approximately 20 years later, we again use Study’s quadric and define a new metric for rigid body displacements based on an optimized local mapping of the quadric. The local mappings of the quadric are achieved using stereographic projections, resulting in an affine space where the Euclidean definition of a metric can be used for rigid body displacements and techniques from design of curves and surfaces can be directly utilized for motion design. The results are illustrated by examples.


2008 ◽  
Vol 381-382 ◽  
pp. 619-622
Author(s):  
W. Zeng ◽  
Xiang Qian Jiang ◽  
P. Scott ◽  
L. Blunt

The detection of stationary and non-stationary noise in environmental vibration data is an important issue when considering the precision of the Watt balance, an electromechanical apparatus for the new definition of the kilogram in the international system of Units (SI). In this paper, the authors propose a frequency histogram method to find the structure of the stationary noise from large amount of datasets. For the non-stationary noise, the authors propose a wavelet based denoising methods to distinguish the transient events from the background “noise”, to find their duration and content and to identify their location in time.


1975 ◽  
Vol 42 (3) ◽  
pp. 552-556 ◽  
Author(s):  
A. J. Padgaonkar ◽  
K. W. Krieger ◽  
A. I. King

The computation of angular acceleration of a rigid body from measured linear accelerations is a simple procedure, based on well-known kinematic principles. It can be shown that, in theory, a minimum of six linear accelerometers are required for a complete definition of the kinematics of a rigid body. However, recent attempts in impact biomechanics to determine general three-dimensional motion of body segments were unsuccessful when only six accelerometers were used. This paper demonstrates the cause for this inconsistency between theory and practice and specifies the conditions under which the method fails. In addition, an alternate method based on a special nine-accelerometer configuration is proposed. The stability and superiority of this approach are shown by the use of hypothetical as well as experimental data.


1999 ◽  
Vol 202 (19) ◽  
pp. 2609-2617 ◽  
Author(s):  
J.E. Bertram ◽  
A. Ruina ◽  
C.E. Cannon ◽  
Y.H. Chang ◽  
M.J. Coleman

In brachiation, an animal uses alternating bimanual support to move beneath an overhead support. Past brachiation models have been based on the oscillations of a simple pendulum over half of a full cycle of oscillation. These models have been unsatisfying because the natural behavior of gibbons and siamangs appears to be far less restricted than so predicted. Cursorial mammals use an inverted pendulum-like energy exchange in walking, but switch to a spring-based energy exchange in running as velocity increases. Brachiating apes do not possess the anatomical springs characteristic of the limbs of terrestrial runners and do not appear to be using a spring-based gait. How do these animals move so easily within the branches of the forest canopy? Are there fundamental mechanical factors responsible for the transition from a continuous-contact gait where at least one hand is on a hand hold at a time, to a ricochetal gait where the animal vaults between hand holds? We present a simple model of ricochetal locomotion based on a combination of parabolic free flight and simple circular pendulum motion of a single point mass on a massless arm. In this simple brachiation model, energy losses due to inelastic collisions of the animal with the support are avoided, either because the collisions occur at zero velocity (continuous-contact brachiation) or by a smooth matching of the circular and parabolic trajectories at the point of contact (ricochetal brachiation). This model predicts that brachiation is possible over a large range of speeds, handhold spacings and gait frequencies with (theoretically) no mechanical energy cost. We then add the further assumption that a brachiator minimizes either its total energy or, equivalently, its peak arm tension, or a peak tension-related measure of muscle contraction metabolic cost. However, near the optimum the model is still rather unrestrictive. We present some comparisons with gibbon brachiation showing that the simple dynamic model presented has predictive value. However, natural gibbon motion is even smoother than the smoothest motions predicted by this primitive model.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


2019 ◽  
Vol 15 (3) ◽  
pp. 157-165
Author(s):  
M.H. Foreman ◽  
J.R. Engsberg ◽  
J.H. Foreman

Rotational falls are a serious cause of injury and death to horse and rider, particularly in the cross-country phase of eventing. The forces involved when horses galloping cross-country strike an immovable fence are unknown. The objective of this study was to mathematically model those forces using existing kinematic data measured from jumping horses. Data were obtained from published research using motion capture to measure mechanics about the center of gravity of the jumping horse at take-off. A convenience method from video evidence of rotational falls was used to estimate time of collision (Δt). A point mass model using equations of impulse-momentum and incorporating key variables was systematically implemented in Matlab (r2016a). The mean collision time (Δt=0.79s) produced horizontal, vertical, and resultant impact forces of 8,580, 8,245, and 12,158 N, respectively. Reference curves of impact forces were created for ranges of relevant input variables including collision time. Proportional relationships showed that shorter impact duration led to higher magnitude of force transfer between horse and obstacle. This study presents a preliminary range of collision forces based on a simplified model and numerous assumptions related to input variables. Future research should work to build upon these estimates through more complex modelling and data collection to enhance applicability for the design of cross-country safety devices.


Sign in / Sign up

Export Citation Format

Share Document