Aerothermodynamics of a High-Pressure Turbine Blade With Very High Loading and Vortex Generators

2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

AITEB-2 is a project where aerothermal challenges of modern high pressure turbine designs are analyzed. One of the scopes of the project is to allow for new gas turbine designs with less parts and lighter jet engines by increasing the blade pitch and therefore the aerodynamic blade loading. For transonic profiles, this leads to very high velocities on the suction side and shock induced separation is likely to occur. The total pressure loss increase due to flow separation and strong shocks, as well as the underturning of the flow, limits the increase of the blade pitch. In this paper, experiments using a linear turbine blade cascade with high aerodynamic loading are presented. The blade pitch is increased such that at design conditions, a strong separation occurs on the suction side. The experiments were run at high subsonic exit Mach numbers and at Reynolds numbers of 390,000 and 800,000. In order to reduce the flow separation and the aerodynamic losses, air jet vortex generators are used, which create streamwise vortices prior to the separation start. Since in high pressure turbine blades film cooling is widely used, also the influence of film cooling both with and without using vortex generators is analyzed. Film cooling is provided on the suction side by two rows of cylindrical holes. This paper provides an analysis of the influence of different main flow conditions, film cooling, and vortex generators on total pressure loss, heat transfer and film cooling effectiveness. The experiments show that the vortex generators, as well as the film cooling reduce flow separation and total pressure losses. The effects are also seen in the local heat transfer, especially with enhanced heat transport in the region with flow separation. The cases presented in this paper deal with complex flow phenomena, which are challenging to be predicted with modern numerical tools correctly. Therefore, the experimental data serve as a comprehensive database for validation of simulation tools in the AITEB-2 project.

Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

AITEB-2 is a project where aerothermal challenges of modern high pressure turbine designs are analysed. One of the scopes of the project is to allow for new gas turbine designs with less parts and lighter jet engines by increasing the blade pitch and therefore the aerodynamic blade loading. For transonic profiles this leads to very high velocities on the suction side and shock induced separation is likely to occur. The total pressure loss increase due to flow separation and strong shocks as well as the under-turning of the flow limits the increase of the blade pitch. In this paper experiments using a linear turbine blade cascade with high aerodynamic loading are presented. The blade pitch is increased such that at design conditions a strong separation occurs on the suction side. The experiments were run at high subsonic exit Mach numbers and at Reynolds numbers of 390,000 and 800,000. In order to reduce the flow separation and the aerodynamic losses, air jet vortex generators are used which create streamwise vortices prior to the separation start. Since in high pressure turbine blades film cooling is widely used, also the influence of film cooling both with and without using vortex generators is analysed. Film cooling is provided on the suction side by two rows of cylindrical holes. The paper provides an analysis of the influence of different main flow conditions, film cooling and vortex generators on total pressure loss, heat transfer and film cooling effectiveness. The experiments show that the vortex generators as well as the film cooling reduce flow separation and total pressure losses. Effects are also seen in the local heat transfer, especially with enhanced heat transport in the region with flow separation. The cases presented in this paper deal with complex flow phenomena which are challenging to be predicted with modern numerical tools correctly. Therefore the experimental data serve as a comprehensive data base for CFD validation in the AITEB-2 project.


Author(s):  
Knut Lehmann ◽  
Richard Thomas ◽  
Howard Hodson ◽  
Vassilis Stefanis

An experimental study has been conducted to investigate the distribution of the convective heat transfer on the shroud of a high pressure turbine blade in a large scale rotating rig. A continuous thin heater foil technique has been adapted and implemented on the turbine shroud. Thermochromic Liquid Crystals were employed for the surface temperature measurements to derive the experimental heat transfer data. The heat transfer is presented on the shroud top surfaces and the three fins. The experiments were conducted for a variety of Reynolds numbers and flow coefficients. The effects of different inter-shroud gap sizes and reduced fin tip clearance gaps were also investigated. Details of the shroud flow field were obtained using an advanced Ammonia-Diazo surface flow visualisation technique. CFD predictions are compared with the experimental data and used to aid interpretation. Contour maps of the Nusselt number reveal that regions of highest heat transfer are mostly confined to the suction side of the shroud. Peak values exceed the average by as much as 100 percent. It has been found that the interaction between leakage flow through the inter-shroud gaps and the fin tip leakage jets are responsible for this high heat transfer. The inter-shroud gap leakage flow causes a disruption of the boundary layer on the turbine shroud. Furthermore, the development of the large recirculating shroud cavity vortices is severely altered by this leakage flow.


Author(s):  
Wolfgang Ganzert ◽  
Leonhard Fottner

As a part of a more complex research program systematic isothermal investigations on the aerodynamics and heat transfer of a large scale turbine cascade with suction side film cooling were carried out. The film cooling through a row of holes at forty percent chord length on the suction side was supplied by a large plenum chamber. Two injection geometries were hitherto tested and evaluated: cylindrical holes with thirty respectively fifty degrees axial inclination angle and no lateral inclination. Typical engine conditions for the Mach and Reynolds number as well as the inlet turbulence level were maintained. The aerodynamic studies are based on steady state pressure measurements. The static profile pressure distribution together with oil-and-dye flow visualisation gives information on the surface flow conditions and boundary layer development especially in the near hole region. The measured data also comprise local and integral total pressure loss coefficients obtained by pressure probe traversing at mid span downstream of the cascade. The heat transfer examination set-up is based on the steady state liquid crystal technique using a compound of a thermochromic sheet combined with an electrical surface heating layer attached on an adiabatic blade corpus. Two dimensional pseudo colour plots are used for the documentation of the local surface heat transfer coefficient distribution and hot spot estimation. Laterally averaged and statistically analysed data of the surface heat transfer is applied in overall heat transfer examinations. All this data is used for a joint aerodynamic flow and surface heat transfer optimisation of a blowing configuration in suction side film cooled turbine cascade. The most important conclusions can be summarised as follows: Aiming at an optimised design of cylindrical film cooling configurations the axial inclination of the holes should be kept low thus diminishing the suction peak value at the cooling position in the profile pressure distribution and decreasing the mainstream deceleration area upstream of the jets. This also leads to reduced total pressure losses. Through the high influence of the blowing on the aerodynamics the flow in the near hole mixing region is highly three-dimensional. This shows significant effects in the two-dimensional surface distribution and the laterally averaged heat transfer coefficient. Oil-and-dye pictures confirm the observations qualitatively.


Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


Author(s):  
Dorian M. Blot ◽  
Arnab Roy ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
Andrew S. Lohaus ◽  
...  

In this paper, detailed experimental results of total pressure loss and secondary flow field are presented for a high turning (127°) airfoil passage in presence of an upstream purge slot (with and without coolant injection). The experiments were performed at Virginia Tech’s quasi 2D linear turbine cascade operating at transonic conditions. Measurements were made at design exit Mach number 0.88 and design incidence angle. The selected coolant to mainstream mass flow ratio (MFR) was set at 1.0%. In order to match engine representative inlet/exit blade loading, a diverging endwall was utilized where the span increased from the inlet to the exit at a 13 degree angle. A 5-hole probe traverse was used to measure exit total pressure. Pressure loss coefficients were calculated both along pitchwise and spanwise directions at 0.1 axial chord downstream of the blade trailing edge. CFD studies were conducted to compliment the experimental results. The backward facing step present with the upstream slot affects the approaching boundary layer and influences the passage horse-shoe vortex strength. The addition of coolant from the purge slot further increased the aerodynamic losses. However, the backward facing step of the upstream slot seems to be the predominant factor in affecting pressure losses when compared to with or without blowing cases. These results provide further understanding of the passage secondary flow characteristics and aid towards improved design of endwall passages. The heat transfer experiments, designed to find the heat transfer coefficient and the film cooling effectiveness are described in detail in part II of this paper [1].


2021 ◽  
Author(s):  
Patrick R. Jagerhofer ◽  
Marios Patinios ◽  
Tobias Glasenapp ◽  
Emil Göttlich ◽  
Federica Farisco

Abstract Due to stringent environmental legislation and increasing fuel costs, the efficiencies of modern turbofan engines have to be further improved. Commonly, this is facilitated by increasing the turbine inlet temperatures in excess of the melting point of the turbine components. This trend has reached a point where not only the high-pressure turbine has to be adequately cooled, but also components further downstream in the engine. Such a component is the turbine center frame (TCF), having a complex aerodynamic flow field that is also highly influenced by purge-mainstream interactions. The purge air, being injected through the wheelspace cavities of the upstream high-pressure turbine, bears a significant cooling potential for the TCF. Despite this, fundamental knowledge of the influencing parameters on heat transfer and film cooling in the TCF is still missing. This paper examines the influence of purge-to-mainstream blowing ratio, purge-to-mainstream density ratio and purge flow swirl angle on the convective heat transfer coefficient and the film cooling effectiveness in the TCF. The experiments are conducted in a sector-cascade test rig specifically designed for such heat transfer studies using infrared thermography and tailor-made flexible heating foils with constant heat flux. The inlet flow is characterized by radially traversing a five-hole-probe. Three purge-to-mainstream blowing ratios and an additional no purge case are investigated. The purge flow is injected without swirl and also with engine-similar swirl angles. The purge swirl and blowing ratio significantly impact the magnitude and the spread of film cooling in the TCF. Increasing blowing ratios lead to an intensification of heat transfer. By cooling the purge flow, a moderate variation in purge-to-mainstream density ratio is investigated, and the influence is found to be negligible.


2021 ◽  
pp. 1-26
Author(s):  
Patrick René Jagerhofer ◽  
Marios Patinios ◽  
Tobias Glasenapp ◽  
Emil Goettlich ◽  
Federica Farisco

Abstract The imperative improvement in the efficiency of turbofan engines is commonly facilitated by increasing the turbine inlet temperature. This development has reached a point where also components downstream of the high-pressure turbine have to be adequately cooled. Such a component is the turbine center frame (TCF), known for a complex aerodynamic flow highly influenced by purge-mainstream interactions. The purge air, being injected through the wheelspace cavities of the upstream high-pressure turbine, bears a significant cooling potential for the TCF. Despite this, fundamental knowledge of the influencing parameters on heat transfer and film cooling in the TCF is still missing. This paper examines the influence of purge-to-mainstream blowing ratio, density ratio and purge swirl angle on heat transfer and film cooling in the TCF. The experiments are conducted in a sector-cascade test rig specifically designed for such heat transfer studies using infrared thermography and tailor-made flexible heating foils with constant heat flux. Three purge-to-mainstream blowing ratios and an additional no purge case are investigated. The purge flow is injected without swirl and also with engine-similar swirl angles. The purge swirl and blowing ratio significantly impact the magnitude and the spread of film cooling in the TCF. Increasing blowing ratios lead to an intensification of heat transfer. By cooling the purge flow, a moderate variation in purge-to-mainstream density ratio is investigated, and the influence is found to be negligible.


Author(s):  
Kenta Mizutori ◽  
Koji Fukudome ◽  
Makoto Yamamoto ◽  
Masaya Suzuki

Abstract We performed numerical simulation to understand deposition phenomena on high-pressure turbine vane. Several deposition models were compared and the OSU model showed good adaptation to any flow field and material, so it was implemented on UPACS. After the implementation, the simulations of deposition phenomenon in several cases of the flow field were conducted. From the results, particles adhere on the leading edge and the trailing edge side of the pressure surface. Also, the calculation of the total pressure loss coefficient was conducted after computing the flow field after deposition. The total pressure loss coefficient increased after deposition and it was revealed that the deposition deteriorates aerodynamic performance.


Author(s):  
Markus Schmidt ◽  
Christoph Starke

This article presents results for the coupled simulation of a high-pressure turbine stage in consideration of unsteady hot gas flows. A semi-unsteady coupling process was developed to solve the conjugate heat transfer problem for turbine components of gas turbines. Time-resolved CFD simulations are coupled to a finite element solver for the steady state heat conduction inside of the blade material. A simplified turbine stage geometry is investigated in this paper to describe the influence of the unsteady flow field onto the time-averaged heat transfer. Comparisons of the time-resolved results to steady state results indicate the importance of a coupled simulation and the consideration of the time-dependent flow-field. Different film-cooling configurations for the turbine NGV are considered, resulting in different temperature and pressure deficits in the vane wake. Their contribution to non-linear effects causing the time-averaged heat load to differ from a steady result is discussed to further highlight the necessity of unsteady design methods for future turbine developments. A strong increase in the pressure side heat transfer coefficients for unsteady simulations is observed in all results. For higher film-cooling mass flows in the upstream row, the preferential migration of hot fluid towards the pressure side of a turbine blade is amplified as well, which leads to a strong increase in material temperature at the pressure side and also in the blade tip region.


Sign in / Sign up

Export Citation Format

Share Document