Experimental Investigation of Flow Instability in a Turbocharger Ported Shroud Compressor

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Erwann Guillou ◽  
Matthieu Gancedo ◽  
Ephraim Gutmark

Turbocharger centrifugal compressors are equipped with a “ported shroud” to reduce flow instabilities at low mass flow rates. This passive stability control device using flow recirculation has been demonstrated to extend the surge margin of a compressor without substantially sacrificing performance. However, the actual working mechanisms of the system are not well understood. In this paper, the relationship between inlet flow recirculation and instability control is studied using stereoscopic particle image velocimetry (PIV) in conjunction with dynamic pressure transducers at the inlet of the turbocharger compressor with and without ported shroud. Both stable and unstable operational points are analyzed using phase-locked PIV measurements during surge. Detailed description of unstable flow in the centrifugal compressor is presented by reconstructing the complex flow structure evolution in the compressor inlet during surge. Rather than one-dimensional, the surge flow is characterized by a three-dimensional structure of both entering and exiting swirling flows, alternating in magnitude during a self-excited pressure cycle. The correlation between pressure and velocity measurements shows that the development of compressor unsteadiness is concurrent with swirling reversed flow at the impeller tip. The impact of the ported shroud on the inlet velocity flowfield is evidenced by the presence of localized flow recirculation. Stability improvement due to the ported shroud is thus a result of removing swirling backflow from the impeller inducer tip and recirculating it into the impeller inlet to increase the near shroud inlet blade loading and the incidence angle.

Author(s):  
Matthieu Gancedo ◽  
Erwann Guillou ◽  
Ephraim Gutmark

Turbocharger centrifugal compressors are equipped with a “ported shroud” to reduce flow instabilities at low mass flow rate. This passive stability control device using flow recirculation has been demonstrated to extend the surge margin of a compressor, without substantially sacrificing performance. However, the actual working mechanisms of the system remain not well understood. In this paper, the relationship between inlet flow recirculation and instability control is studied using stereoscopic particle image velocimetry (PIV) in conjunction with dynamic pressure transducers at the inlet of a turbocharger compressor with and without a ported shroud. Both stable and unstable operational points are analyzed with use of phase-locked PIV measurements in surge. Detailed description of unstable flow in a centrifugal compressor is presented with the reconstruction of the complex flow structure evolution at the compressor inlet during surge. Rather than one-dimensional, the surge flow is described by a three-dimensional axisymmetric structure of combined entering and exiting swirling flows, alternating in magnitude during the self-excited pressure cycle. The correlation between pressure and velocity measurements shows that the development of compressor unsteadiness is accompanied with swirling reversed flow at the impeller tip. The influence of the ported shroud on the inlet velocity flowfield is seen with the presence of localized flow recirculation. Stability improvement with a ported shroud is thus explained by removing swirling backflow at the impeller inducer tip and recirculating it to the impeller inlet to increase the near shroud inlet blade loading and incidence angle.


2021 ◽  
Vol 28 (2) ◽  
pp. 022309
Author(s):  
A. E. Fraser ◽  
P. W. Terry ◽  
E. G. Zweibel ◽  
M. J. Pueschel ◽  
J. M. Schroeder

2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


Author(s):  
Hervé Vicari ◽  
C.W.W. Ng ◽  
Steinar Nordal ◽  
Vikas Thakur ◽  
W.A. Roanga K. De Silva ◽  
...  

The destructive nature of debris flows is mainly caused by flow bulking from entrainment of an erodible channel bed. To arrest these flows, multiple flexible barriers are commonly installed along the predicted flow path. Despite the importance of an erodible bed, its effects are generally ignored when designing barriers. In this study, three unique experiments were carried out in a 28 m-long flume to investigate the impact of a debris flow on both single and dual flexible barriers installed in a channel with a 6 m-long erodible soil bed. Initial debris volumes of 2.5 m<sup>3</sup> and 6 m<sup>3</sup> were modelled. For the test setting adopted, a small upstream flexible barrier before the erodible bed separates the flow into several surges via overflow. The smaller surges reduce bed entrainment by 70% and impact force on the terminal barrier by 94% compared to the case without an upstream flexible barrier. However, debris overflowing the deformed flexible upstream barrier induces a centrifugal force that results in a dynamic pressure coefficient that is up to 2.2 times higher than those recommended in guidelines. This suggests that although compact upstream flexible barriers can be effective for controlling bed entrainment, they should be carefully designed to withstand higher impact forces.


Author(s):  
Chuang Gao ◽  
Weiguang Huang ◽  
Haiqing Liu ◽  
Hongwu Zhang ◽  
Jundang Shi

This paper concerns with the numerical and experimental aspects of both steady and unsteady flow behavior in a centrifugal compressor with vaneless diffuser and downstream collector. Specifically, the appearance of flow instabilities i.e., rotating stall and surge is investigated in great detail. As the first step, the static performance of both stage and component was analyzed and possible root cause of system surge was put forward based on the classic stability theory. Then the unsteady pressure data was utilized to find rotating stall and surge in frequency domain which could be classified as mild surge and deep surge. With the circumferentially installed transducers at impeller inlet, backward travelling waves during stall ramp could be observed. The modes of stall waves could be clearly identified which is caused by impeller leading edge flow recirculation at Mu = 0.96. However, for the unstable flow at Mu = 1.08, the system instability seems to be caused by reversal flow in vaneless diffuser where the pressure oscillation was strongest. Thus steady numerical simulation were performed and validated with the experimental performance data. With the help of numerical analysis, the conjectures are proved.


Author(s):  
Diego Rocco ◽  
Silvia Salcuni ◽  
Elena Antonelli

The Session Evaluation Questionnaire (SEQ) measures the impact of counselling and psychotherapy sessions; it may be conceived as a bridge between psychotherapy process and outcome. Even if the original American SEQ has been translated into many languages, only a few translations have been validated. This is a pilot study that attempted to replicate the five-dimensional structure of the fourth version of the Anglo-American SEQ, for the Italian population. The SEQ is a self-report tool asking patients about their experience with the clinical session just ended; it consists of 27 adjectives in semantic differential scale, divided into three thematic parts: evaluation of the session itself, feelings after the session, and evaluation of the therapist. Data were collected on 111 outpatients attending the Dynamic Psychological Service for University Students, after their first two clinical interviews. Exploratory factor analyses were performed on each of the three parts of the SEQ. Results confirmed the original factorial structure, for Depth, Smoothness, Positivity and Arousal dimensions; Good Therapist dimension overlapped perfectly with the original one. The Italian SEQ showed adequate internal consistency. Convergent validity measured with an index of perceived satisfaction in the counselling process showed significant positive correlations. This pilot study showed that the Italian SEQ is a reliable instrument to measure the impact of clinical sessions. Validation studies are needed, especially to replicate the factor structure of the instrument and to better assess its validity.


2021 ◽  
Author(s):  
Qiugang Zong

Abstract. Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physics based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations. Magnetosphere response to solar wind forcing, is not just a “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contains two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells. Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves has been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF waves are much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.


2020 ◽  
Author(s):  
Sarah R Ball ◽  
Julius S P Adamson ◽  
Michael A Sullivan ◽  
Manuela R Zimmermann ◽  
Victor Lo ◽  
...  

AbstractThe amyloid-β peptide, the main protein component of amyloid plaques in Alzheimer’s disease, plays a key role in the neurotoxicity associated with the condition through the formation of small toxic oligomer species which mediate the disruption of calcium and glutamate homeostasis. The lack of therapeutic benefit associated with removal of mature amyloid-β fibrils has focused attention on the toxic oligomeric species formed during the process of fibril assembly. Here, we present the design and synthesis of a family of perphenazine-macrocyle conjugates. We find that two-armed perphenazine-cyclam conjugates divert the monomeric form of the amyloid-β peptide away from the amyloidogenic pathway into amorphous aggregates that are not toxic to differentiated SH-SY5Y cells in vitro. This strategy prevents the formation of damaging amyloid oligomers. Kinetic analysis of the effects of these compounds on the assembly pathway, together with NMR spectroscopy, identifies rapid monomer sequestration as the underlying neuroprotective mechanism. The ability to specifically target the monomeric form of amyloid-β allows for further understanding of the impact of the multiple species formed between peptide biogenesis and plaque deposition. The modular, three-dimensional structure of these compounds provides a starting point for the design of more potent modulators of this amyloid-forming peptide, and can be adapted to probe the protein self-assembly pathways associated with other proteinopathies.Significance statementThe aggregation pathway of the amyloid-β (Aβ) peptide in Alzheimer’s disease is complex and involves multiple different species. An inability to isolate and study the impact of distinct Aβ species has undermined efforts to develop effective therapies. To address this issue, we have developed a series of molecules that specifically sequester the monomeric form of the highly aggregation-prone Aβ42 peptide. Interaction with these molecules diverts Aβ42 from the amyloidogenic pathway and prevents formation of toxic oligomeric species. We use kinetic analysis and NMR spectroscopy to identify rapid monomer sequestration as the underlying neuroprotective mechanism. Future rational development of these molecules and characterisation of their interactions with Aβ will delineate the impact of different Aβ oligomers on neurobiology and pathology.


Sign in / Sign up

Export Citation Format

Share Document