A Low-Cost Mechanically Rechargeable Aluminum–Air Cell for Energy Conversion Using Low-Grade Aluminum Foil

Author(s):  
Binbin Chen ◽  
Dennis Y. C. Leung

The performance of a mechanically rechargeable aluminum (Al)–air cell, fabricated with low-cost materials including low-grade aluminum foil and carbon paper electrodes, was evaluated. The design adopted a free gravity flow for the electrolyte to eliminate the use of an external pump. A tank for storing waste electrolyte was designed with a dedicated channel for the collection of hydrogen gas generated during the cell discharge. The cell achieved a high utilization efficiency of aluminum. Considering both the electricity and hydrogen generated, an overall utilization efficiency of around 90% or even higher could be achieved under different working voltages. Results of repeated recharging/discharging showed that the performances of the cell could be maintained for repeated refilling.

2013 ◽  
Vol 726-731 ◽  
pp. 2521-2525
Author(s):  
Zhi Yong Zhang ◽  
De Li Wu

Coking wastewater is a kind of recalcitrant wastewater including complicate compositions. Advanced treatment of coking wastewater by Fenton-Like reaction using pyrite as catalyst was investigated in this paper. The results show that the chemical oxygen demand (COD) of coking wastewater decreased significantly by method of coagulation combined with two-stage oxidation reaction. COD of wastewater can decrease from 250mg/l to 45mg/l after treatment, when 2g/L pyrite was used in each stage oxidation and the dosage of hydrogen peroxide (H2O2) is 0.2ml/l for first stage treatment, 0.1ml/l for second stage treatment respectively. The pyrite is effective to promote Fenton-Like reaction with low cost due to high utilization efficiency of H2O2, moreover, catalyst could be easily recovered and reused. The Fenton-Like reaction might be used as a potential alternative to advanced treatment of recalcitrant wastewater.


2016 ◽  
Vol 4 (9) ◽  
pp. 3554-3559 ◽  
Author(s):  
Y. Wang ◽  
S. M. Zhang ◽  
Y. Deng

Solution based polymer thermoelectric generation technologies provide a low-cost and eco-friendly means of direct energy conversion from low-grade heat to electricity.


2005 ◽  
Vol 2 (3) ◽  
pp. 197-201 ◽  
Author(s):  
Fang-Bor Weng ◽  
Ay Su ◽  
Yur-Tsai Lin ◽  
Guo-Bin Jung ◽  
Yen-Ming Chen

A simple, low-cost testing method is proposed for fuel cell hardware development. A perforated aluminum foil with an array of small holes covered with carbon paper or cloth replaces the membrane electrode assemblies to test the contact resistance and gas permeability of the carbon paper. Practical fuel cells of 50cm2 reaction area with different gasket thicknesses and compressed pressures are tested for performance. The results of ohmic resistance and permeability of compressed carbon paper indicate strong relevance to cell performance, demonstrating that this novel testing method is valuable for fuel cell hardware development. Also, the compression mechanism of the diffusion layer is discussed along with a proposal for a strategy for improving cell performance. After that, an advanced design of a 25cm2 single cell is developed. The results of cell performance of the advanced cell are acceptable and competitive with the performance data of commercial products.


2020 ◽  
Vol 07 ◽  
Author(s):  
Li Qiannan ◽  
Ling Yeqing ◽  
Zheng Hewen ◽  
Yang Zhi

: Manganese ore is an important metallurgical raw material that holds an important strategic position in the national economy of China. However, the grade of manganese ore in the country is mostly low, and the utilization efficiency of lowgrade manganese ore resources is low, which seriously restrict the healthy and stable development of China’s metallurgical industry. As a new green heating method, microwave is expected to address the problems of conventional methods and realize the effective utilization of low-grade manganese ore. In this paper, the research status of the microwave composite reduction of pyrolusite in recent years is reviewed. Microwave plays an important role in metallurgy, and it is the current direction pursued to improve the research intensity of microwave heating and extend it to actual industrial processes.


Author(s):  
Laura Wienands ◽  
Franziska Theiß ◽  
James Eills ◽  
Lorenz Rösler ◽  
Stephan Knecht ◽  
...  

AbstractParahydrogen-induced polarization is a hyperpolarization method for enhancing nuclear magnetic resonance signals by chemical reactions/interactions involving the para spin isomer of hydrogen gas. This method has allowed for biomolecules to be hyperpolarized to such a level that they can be used for real time in vivo metabolic imaging. One particularly promising example is fumarate, which can be rapidly and efficiently hyperpolarized at low cost by hydrogenating an acetylene dicarboxylate precursor molecule using parahydrogen. The reaction is relatively slow compared to the timescale on which the hyperpolarization relaxes back to thermal equilibrium, and an undesirable 2nd hydrogenation step can convert the fumarate into succinate. To date, the hydrogenation chemistry has not been thoroughly investigated, so previous work has been inconsistent in the chosen reaction conditions in the search for ever-higher reaction rate and yield. In this work we investigate the solution preparation protocols and the reaction conditions on the rate and yield of fumarate formation. We report conditions to reproducibly yield over 100 mM fumarate on a short timescale, and discuss aspects of the protocol that hinder the formation of fumarate or lead to irreproducible results. We also provide experimental procedures and recommendations for performing reproducible kinetics experiments in which hydrogen gas is repeatedly bubbled into an aqueous solution, overcoming challenges related to the viscosity and surface tension of the water.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2436
Author(s):  
Abubakar Sadiq Mohammed ◽  
Martina Meincken

Low-cost wood–plastic composites (WPCs) were developed from invasive trees and recycled low-density polyethylene. The aim was to produce affordable building materials for low-cost social housing in South Africa. Both raw materials are regarded as waste materials, and the subsequent product development adds value to the resources, while simultaneously reducing the waste stream. The production costs were minimised by utilising the entire biomass of Acacia saligna salvaged from clearing operations without any prior processing, and low-grade recycled low-density polyethylene to make WPCs without any additives. Different biomass/plastic ratios, particle sizes, and press settings were evaluated to determine the optimum processing parameters to obtain WPCs with adequate properties. The water absorption, dimensional stability, modulus of rupture, modulus of elasticity, tensile strength, and tensile moduli were improved at longer press times and higher temperatures for all blending ratios. This has been attributed to the crystallisation of the lignocellulose and thermally induced cross-linking in the polyethylene. An increased biomass ratio and particle size were positively correlated with water absorption and thickness swelling and inversely related with MOR, tensile strength, and density due to an incomplete encapsulation of the biomass by the plastic matrix. This study demonstrates the feasibility of utilising low-grade recycled polyethylene and the whole-tree biomass of A. saligna, without the need for pre-processing and the addition of expensive modifiers, to produce WPCs with properties that satisfy the minimum requirements for interior cladding or ceiling material.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1141
Author(s):  
Ángel Encalada-Dávila ◽  
Mayken Espinoza-Andaluz ◽  
Julio Barzola-Monteses ◽  
Shian Li ◽  
Martin Andersson

A polymer electrolyte fuel cell (PEFC) is an electrochemical device that converts chemical energy into electrical energy and heat. The energy conversion is simple; however, the multiphysics phenomena involved in the energy conversion process must be analyzed in detail. The gas diffusion layer (GDL) provides a diffusion media for reactant gases and gives mechanical support to the fuel cell. It is a complex medium whose properties impact the fuel cell’s efficiency. Therefore, an in-depth analysis is required to improve its mechanical and physical properties. In the current study, several transport phenomena through three-dimensional digitally created GDLs have been analyzed. Once the porous microstructure is generated and the transport phenomena are mimicked, transport parameters related to the fluid flow and mass diffusion are computed. The GDLs are approximated to the carbon paper represented as a grouped package of carbon fibers. Several correlations, based on the fiber diameter, to predict their transport properties are proposed. The digitally created GDLs and the transport phenomena have been modeled using the open-source library named Open Pore Network Modeling (OpenPNM). The proposed correlations show a good fit with the obtained data with an R-square of approximately 0.98.


1978 ◽  
Vol 22 (4) ◽  
pp. 335-345 ◽  
Author(s):  
G. H. Schwuttke ◽  
T. F. Ciszek ◽  
K. H. Yang ◽  
A. Kran

2012 ◽  
Vol 509 ◽  
pp. 51-55
Author(s):  
Hong Quan Liu ◽  
Fei Xiang Hao ◽  
Yi Jie Gu ◽  
Yun Bo Chen

LiFePO4 has been considered as the most promising positive electrode due to its low cost, high theoretical capacity, stability and low toxicity, all highly required in vehicle applications. In this work, LiFePO4 compound was synthesized by the solid carbothermic reduction reactions with different Li resource. The pure LiFePO4 phase was confirmed for all samples by analysis of the XRD results. The different morphologies were obtained due to different Li resources. The potential plateau of all samples is in the range from 3V to 4V. The sample (LiCO3 as the Li resource) has a higher discharge capacity of 118mAhg−1 at 0.2C 20% greater than that of the sample (LiOH as the Li resource). The reason comes maybe from nano pore characteristics, which reduce Li ion diffusion distance, and increase the utilization efficiency of material.


Sign in / Sign up

Export Citation Format

Share Document