Design for Sustainable Use of Appliances: A Framework Based on User Behavior Observations

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Chathura Withanage ◽  
Katja Hölttä-Otto ◽  
Kevin Otto ◽  
Kristin Wood

User behavior can determine over one third of the energy consumed in the residential energy market. Thus, user behavior has become a primary focus in sustainable mechanical device, appliance, and smart-energy systems design. Wasteful user behaviors, termed energy overuse failure modes (EOFMs), offer an opportunity for design engineers to direct users toward more sustainable behavior through design strategies. There are fundamentally two intervention strategies: (1) product or systems solution led or (2) behavioral led. Both are used to achieve increased sustainable user behavior. To ensure expected intervention outcomes, it is equally important to both identify the EOFMs as well as their underlying causes. However, the prevailing sustainable design approaches, such as design for sustainable behavior (DfSB) and ecodesign, depend on stated responses to elicit underlying causes of behavior. Consequently, the outcomes of these approaches are susceptible to response biases. In this paper, a new revealed behavior based framework is introduced to elicit underlying causes of EOFMs and to propose potential intervention strategies to address them. We focus on uncovering two underlying causes that correspond to the intervention strategies: (1) high energy consuming habits and (2) lack of energy awareness. In the proposed framework, user behavior categorization matrices are formulated using a two-phase user study approach with a request to lower the energy use in-between the phases. Based on the observed behavior, each EOFM is matrix categorized on two axes of change and correctness. With this data, the matrices thereby indicate the dominant underlying causes of EOFMs. The EOFMs and proposed interventions can then be prioritized based on the likelihood of occurrence, severity, magnitude or a combinatorial strategy to suit the sustainability objectives. A case study is presented with seven EOFMs that are found in typical day-to-day household electromechanical appliance use including inefficient appliance setup, inefficient selection, inefficient operation, standby energy consumption, and inefficient settings of conditions. Lack of user awareness of energy and power interactions among appliances and household settings is identified as the key underlying cause of considered EOFMs. Potential design solution strategies are also considered to overcome the EOFMs based on likelihoods, severities, and magnitudes, respectively. Each solution strategy carries a varying level of knowledgeable decision-making required of the user, compared with alternatively designing into the product or systems restrictions on use.

Author(s):  
Chathura Withanage ◽  
Rahul Ashok ◽  
Katja Hölttä-Otto ◽  
Kevin Otto

The constantly growing world population and depleting natural resources make promoting sustainable behavior of paramount importance. Household energy is a significant percent of global energy consumption. While there has been significant work in improving energy awareness, there remains opportunity in designing systems that help direct users toward more sustainable behavior. This is particularly true since user behavior, as influenced by attitudes, beliefs and preferences, is a main driver of the household energy consumption. In this paper, a method is presented to identify and categorize design for sustainable behavior opportunities as failure modes on unnecessary overconsumption. We do this by comparing actual behavior against the minimum necessary to complete the task. Any deviation from the energy minimum is a failure mode opportunity. We clarify when opportunities are suitable for design for sustainable behavior, and when opportunities require stronger intervention of product or process redesign. To do this, user behavior was analyzed in a living laboratory format. Subjects were asked to perform a simple daily cooking activity in two phases; first in their routine manner and subsequently by trying to reduce energy consumption. In addition to recorded data on energy consumed, the users were interviewed on each user activity to understand which activities people were aware of means to reduce energy and in which they were not. The overall results show that all participants were able to reduce their energy consumption significantly when asked to do so, but these energy reducing behaviors were often ignored and not part of their daily routine. Based on this analysis, we identify opportunities where improving energy awareness is the issue, and other opportunities where more difficult sustainable design of the product or the process is needed since users are already aware but choose not to bother with reducing consumption.


Author(s):  
Jason Millar

This chapter argues that, just as technological artefacts can break as a result of mechanical, electrical, or other physical defects not fully accounted for in their design, they can also break as a result of social defects not fully accounted for in their design. These failures resulting from social defects can be called social failures. The chapter then proposes a definition of social failure as well as a taxonomy of social failure modes—the underlying causes that lead to social failures. An explicit and detailed understanding of social failure modes, if properly applied in engineering design practice, could result in a fuller evaluation of the social and ethical implications of technology, either during the upstream design and engineering phases of a product, or after its release. Ideally, studying social failure modes will improve people’s ability to anticipate and reduce the rate or severity of undesirable social failures prior to releasing technology into the wild.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3613
Author(s):  
Baohui Yang ◽  
Yangjie Zuo ◽  
Zhengping Chang

Foams are widely used in protective applications requiring high energy absorption under impact, and evaluating impact properties of foams is vital. Therefore, a novel test method based on a shock tube was developed to investigate the impact properties of closed-cell polyethylene (PE) foams at strain rates over 6000 s−1, and the test theory is presented. Based on the test method, the failure progress and final failure modes of PE foams are discussed. Moreover, energy absorption capabilities of PE foams were assessed under both quasi-static and high strain rate loading conditions. The results showed that the foam exhibited a nonuniform deformation along the specimen length under high strain rates. The energy absorption rate of PE foam increased with the increasing of strain rates. The specimen energy absorption varied linearly in the early stage and then increased rapidly, corresponding to a uniform compression process. However, in the shock wave deformation process, the energy absorption capacity of the foam maintained a good stability and exhibited the best energy absorption state when the speed was higher than 26 m/s. This stable energy absorption state disappeared until the speed was lower than 1.3 m/s. The loading speed exhibited an obvious influence on energy density.


2017 ◽  
Vol 11 (01) ◽  
pp. 65-84 ◽  
Author(s):  
Denny Stohr ◽  
Iva Toteva ◽  
Stefan Wilk ◽  
Wolfgang Effelsberg ◽  
Ralf Steinmetz

Instant sharing of user-generated video recordings has become a widely used service on platforms such as YouNow, Facebook.Live or uStream. Yet, providing such services with a high QoE for viewers is still challenging, given that mobile upload speed and capacities are limited, and the recording quality on mobile devices greatly depends on the users’ capabilities. One proposed solution to address these issues is video composition. It allows to switch between multiple recorded video streams, selecting the best source at any given time, for composing a live video with a better overall quality for the viewers. Previous approaches have required an in-depth visual analysis of the video streams, which usually limited the scalability of these systems. In contrast, our work allows the stream selection to be realized solely on context information, based on video- and service-quality aspects from sensor and network measurements. The implemented monitoring service for a context-aware upload of video streams is evaluated in different network conditions, with diverse user behavior, including camera shaking and user mobility. We have evaluated the system’s performance based on two studies. First, in a user study, we show that a higher efficiency for the video upload as well as a better QoE for viewers can be achieved when using our proposed system. Second, by examining the overall delay for the switching between streams based on sensor readings, we show that a composition view change can efficiently be achieved in approximately four seconds.


Author(s):  
Frederick Ray I. Gomez ◽  
Alyssa Grace S. Gablan ◽  
Anthony R. Moreno ◽  
Nerie R. Gomez

Technological change has brought the global market into broad industrialization and modernization. One major application in the semiconductor industry demands safety and high reliability with strict compliance requirement. This technical paper focuses on the package design solution of quad-flat no leads (QFN) to mitigate the leadframe bouncing and its consequent effect of lifted wire and/or non-stick on leads (NSOL) defects on multi-wire ground connection. Multi-wire on single lead ground (or simply Gnd) connection plays critical attribute in the test coverage risk assessment. Cases of missing wire and/or NSOL on the multi-wire Gnd connection cannot be detected at test resulting to Bin1 (good) instead of Bin5 (open) failure. To ease the failure modes mechanism, a new design of QFN leadframe package with lead-to-diepad bridge-type connection was conceptualized for device with extended leads and with multiple Gnd wires connection. The augmented design would provide better stability than the existing leadframe configurations during wirebonding. Ultimately, the design would help eliminate potential escapees at test of lifted Gnd wire not detected.


2004 ◽  
Vol 846 ◽  
Author(s):  
Chris S. K. Mak ◽  
Scott E. Watkins ◽  
Charlotte K. Williams ◽  
Nicholas R. Evans ◽  
Khai Leok Chan ◽  
...  

ABSTRACTThis paper describes two aspects of research aimed at harnessing the triplet energy generated in electron-hole recombination in polymer electroluminescent devices. The purpose is to design solution-processible phosphorescent organometallic triplet emitters and to design high triplet energy polymer hosts that can transfer triplet energy to the phosphorescent guests. The method employed Suzuki cross coupling reactions to incorporate either phosphorescent cores or high energy triplet monomers covalently into polymer hosts to evaluate their optoelectronic properties. The results showed (i) efficient energy transfer from polyfluorene hosts to red phosphorescent guests and (ii) that pyridine and carbazole monomers could raise triplet energies of hosts. It is concluded that these approaches offer promise in the design of solution processible electrophosphorescent materials for red and green light emitting devices.


Author(s):  
Ali A. Heravi ◽  
Oliver Mosig ◽  
Ahmed Tawfik ◽  
Manfred Curbach ◽  
Viktor Mechtcherine

The ductile behavior of strain hardening cement-based composites (SHCC) under direct tensile load makes them promising solutions for applications where high energy dissipation is needed, such as earthquake, impact by a projectile, or blast. However, the superior tensile ductility of SHCC due to multiple cracking does not necessarily entail compressive and shear ductility. As an effort to characterize the behavior of SHCC under impact compressive and shear loading, relevant to the mentioned high-speed loading scenarios, the paper at hand studies the performance of a SHCC and its constituent cement-based matrices using the split-Hopkinson bar method. For compression experiments, cylindrical specimens with a length-to-diameter ratio (l/d) of 1.6 were used. The selected length of the sample led to similar failure modes under the quasi-static and impact loading conditions, which was necessary for a reliable comparison of the obtained compressive strengths. The impact experiments were performed in a split-Hopkinson pressure bar (SHPB) at a strain rate that reached 110 s-1 at the moment of failure. For shear experiments, a special adapter was developed for a split-Hopkinson tension bar (SHTB). The adapter enabled performing impact shear experiments on planar specimens using the tensile wave generated in the SHTB. Results showed a dynamic increase factor (DIF) of 2.3 and 2.0 for compressive and shear strength of SHCC, respectively. As compared to the non-reinforced constituent matrix, the absolute value of the compressive strength was lower for the SHCC. Contrarily, under shear loading, the SHCC yielded the higher shear strength than the non-reinforced matrix.


Author(s):  
Somaiah Thimmaiah ◽  
Keith Phelan ◽  
Joshua D. Summers

Design reviews are typically used for three types of design activities: 1) identifying errors, 2) assessing the impact of the errors, and 3) suggesting solutions for the errors. This experimental study focuses on understanding the second issue as it relates to the number of errors considered, the existence of controls, and the level of domain familiarity of the assessor. A set of design failures and associated controls developed for a completed industry sponsored project is used as the experimental design problem. Non-domain individuals (students from an undergraduate psychology class), domain generalists (first year engineering students), and domain-specialists (graduate mechanical engineering students) are provided a set of failure modes and asked to estimate the likelihood that the system would still successfully achieve the stated objectives. Primary results from the study include the following: the confidence level for all domain population decreased significantly as the number of design errors increased (largest p-value = 0.0793) and this decrease in confidence is more significant as the design errors increase. The impact on confidence is less when solutions (controls) are provided to prevent the errors (largest p-value = 0.0334), the confidence decreased faster for domain general engineers as compared to domain specialists (p = <0.0001). The domain specialists showed higher confidence in making decisions than domain generals and non-domain generalists as the design errors increase.


AI Magazine ◽  
2013 ◽  
Vol 34 (2) ◽  
pp. 11 ◽  
Author(s):  
Yifei Jiang ◽  
Kun Li ◽  
Ricardo Piedrahita ◽  
Xiang Yun ◽  
Lei Tian ◽  
...  

Since people spend a majority of their time indoors, indoor air quality (IAQ) can have a significant impact on human health, safety, productivity, and comfort. Due to the diversity and dynamics of people's indoor activities, it is important to monitor IAQ for each individual. Most existing air quality sensing systems are stationary or focus on outdoor air quality. In contrast, we propose MAQS, a user-centric mobile sensing system for IAQ monitoring. MAQS users carry portable, indoor location tracking and IAQ sensing devices that provide personalized IAQ information in real time. To improve accuracy and energy efficiency, MAQS incorporates three novel techniques: (1) an accurate temporal n-gram augmented Bayesian room localization method that requires few Wi-Fi fingerprints; (2) an air exchange rate based IAQ sensing method, which measures general IAQ using only CO$_2$ sensors; and (3) a zone-based proximity detection method for collaborative sensing, which saves energy and enables data sharing among users. MAQS has been deployed and evaluated via a real-world user study. This evaluation demonstrates that MAQS supports accurate personalized IAQ monitoring and quantitative analysis with high energy efficiency. We also found that study participants frequently experienced poor IAQ.


Sign in / Sign up

Export Citation Format

Share Document