The Effect of Nanoparticle Functionalization on Lubrication Performance of Nanofluids Dispersing Silica Nanoparticles in an Ionic Liquid

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Cengiz Yegin ◽  
Wei Lu ◽  
Bassem Kheireddin ◽  
Ming Zhang ◽  
Peng Li ◽  
...  

Recently, ionic liquids (ILs) have received an increasing attention as lubricants owing to their intriguing properties such as tunable viscosity, high thermal stability, low emissions, nonflammability, and corrosion resistance. In this work, we investigate how the incorporation of octadecyltrichlorosilane (OTS) functionalized silica nanoparticles (NPs) in 1-butyl-3-methylimidazolium (trifluoromethysulfony)imide influences the tribological properties and rheological properties of IL under boundary lubrication and elastohydrodynamic conditions, respectively. It was found that the coefficient of friction was depended on the concentration of NPs in IL with a concave upward functional trend with a minimum at 0.05 wt.% for bare silica NPs and at 0.10 wt.% for OTS-functionalized silica NPs. For steel–steel sliding contact, the presence of functionalized NPs in IL at the optimum concentration decreased the coefficient of friction by 37% compared to IL and 17% compared to IL with bare silica NPs. While IL with bare NPs demonstrated a shear thinning behavior for all concentrations, IL with functionalized NPs showed a Newtonian behavior at low concentrations and shear thinning behavior at high concentrations. Overall, this study provides new insights into the antifriction and antiwear additives for lubrication systems involving ILs.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1438
Author(s):  
Ankush Raina ◽  
Mir Irfan Ul Haq ◽  
Ankush Anand ◽  
Sanjay Mohan ◽  
Rajiv Kumar ◽  
...  

Nanodiamond (ND) particles are effective lubricant additives. Attention of research has shifted towards investigating the particles as secondary additives. ND particles provide more benefits as secondary additives than as the sole lubricant additive for steel–steel contacts. In this work, the influence of ND particles as secondary additives on oil lubrication of steel–aluminium tribopair (hard–soft contact) was examined. AISI 52100 steel balls were slid against AA2024 aluminium alloy discs, in the presence of polyalphaolefin (PAO) base oil, in boundary lubrication regime (applied normal load: 10 N to 50 N). Primary additives were copper oxide (CuO) and hexagonal boron nitride (h-BN) nanoparticles. The addition of ND particles to PAO, with CuO and h-BN as primary additives, at the lowest applied normal load of 10 N: (i) decreased the volumetric wear of the aluminium discs by 28% and 63%, respectively, and (ii) decreased the coefficient of friction by 15% and 33%, respectively. At the highest applied normal load of 50 N, it: (i) decreased the volumetric wear of the aluminium discs by 20% and 38%, respectively, and (ii) decreased the coefficient of friction by 5.4% and 8%, respectively. ND particles as secondary additives significantly reduce energy loss and power loss as a consequence of an effective reduction in friction during sliding. Unique characteristics of ND particles—such as their (a) physicochemical and thermal properties, (b) ball bearing and polishing effects and (c) synergistic interaction with primary additives to form stable tribofilms—enhance the lubrication performance of steel–aluminium contact. ND particles in combination with h-BN nanoparticles showed the best performance, due to better synergy between the primary additive and the secondary additive. Results from the investigation indicate that ND particles taken as secondary additives in small amount (0.2 wt%) can improve oil lubrication performance of hard–soft contacts in engineering systems.


Author(s):  
Nawal Achak ◽  
Ouafae Rkibi ◽  
Bennasser Bahrar ◽  
Kamal Gueraoui

An unstable flow of non-Newtonian fluid, with friction in a pipe is studied, describing the water hammer phenomenon. The equations of the problem are given, then solved by a numerical approach. The non-Newtonian behavior of the fluid, as well as the effect of the coefficient of friction which represents an additional mechanism of energy dissipation are investigated. The 1D and 2D problem is used simultaneously, based on the Runge-kutta method for the descritization in time, Finite differences, Characteristics for the descritization in space. The results of this article show by verifying with experience that these methods used, in addition to being simple, are also effective and give reasonable results.


2020 ◽  
Vol 21 (1) ◽  
pp. 108
Author(s):  
Liang Hao ◽  
Zheng Wang ◽  
Guoyuan Zhang ◽  
Yangyang Zhao ◽  
Qingjuan Duan ◽  
...  

Base oils containing different nanoparticles with varying concentrations are prepared, in which SiO2, TiO2 and ZnO (20 nm) nanoparticles are employed to improve the lubrication performance. Their tribological properties are evaluated on a ball-on-disk tribometer. The results show that the nano-additive lubricants exhibit a good friction reduction and anti-wear ability at the optimal concentration of 1.0 wt.%, in which SiO2 nanoparticles can reduce the coefficient of friction (COF) and the area of wear scar (AWS) by 45.6% and 35%, respectively. The SiO2 nanoparticles exhibit the best potential additive tested. The lubrication mechanisms of the nanoparticles can be attributed to the rolling, mending and the protective films.


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1970 ◽  
Vol 23 (03) ◽  
pp. 601-620 ◽  
Author(s):  
Th. B Tschopp

SummaryAggregation of cat platelets in the citrated plasma is examined by means of Born’s absorptiometer. A marked tendency of the platelets of this species to spontaneous aggregation necessitated first of all the development of an improved technique of blood collection.A hypothesis according to which 5-HT is released from the platelets, explains the absence of oscillations on the base line of the absorptiometer, the absence of platelet swelling, when ADP is added, and the effect of stirring on the aggregation curves in cat PRP. The average volume of cat platelets amounts to 10.46 μ3 when directly fixed in the blood, when fixed from PRP to 12.17 μ3, when fixed from stirred PRP to 13.51 μ3.In low concentrations (0.3-2 μM) ADP produce reversible aggregation; in narrowly restricted, individually dissimilar mean concentrations irreversible aggregation in two phases and in high concentrations, irreversible aggregation in one phase. Like ADP serotonin produces 2 phase irreversible aggregation in concentrations of 3-10 μM, but unlike ADP, the aggregation velocity decreases again with high 5-HT concentrations (>100 μM). Adrenaline does not produce aggregation and it is likely that adenosine and adenosine monophosphate inhibit the aggregation by serotonin but not by ADP. Species differences in the aggregation of human, rabbit and cat platelets are discussed.


1971 ◽  
Vol 26 (01) ◽  
pp. 145-166
Author(s):  
E Deutsch ◽  
K Lechner ◽  
K Moser ◽  
L Stockinger

Summary1. The aniline derivative AN 162, Donau Pharmazie, Linz, Austria, has a dual action on the blood coagulation: an anticoagulant and an coagulation enhancing effect.2. The anticoagulant action may only be demonstrated with high concentrations (over 1 X 10”3 M related to plasma) preferentially in PPP. It is partially caused by an inhibition of the endogenous way of generation of the prothrombin converting principle. In addition it is suggested that it interferes with the fibrinogen-fibrin reaction in a manner not yet understood.3. The coagulant action is caused by a greater availability of platelet constituents at low concentrations of AN 162 (over 1 × 10-4 M) and by the induction of a release reaction at higher concentrations. The platelet factors 3 and 4, serotonin, adenine, and acid phosphatase are released.4. AN 162 inhibits platelet aggregation. This inhibition can be demonstrated by the PAT of Breddin and in the stirred aggregation test of Born. It is more effective to inhibit the collagen-induced and the second phase of the adrenaline-induced aggregation than the ADP induced one. The platelet retention (test of Hellem) is also reduced.5. The action of AN 162 on the platelets is caused by a damage of the platelet membrane which becomes permeabel for both, soluble platelet constitutents and granula.6. AN 162 interferes with the energy metabolism of the platelets. It causes a loss of ATP, and inhibits the key-enzymes of glycolysis, citric acid cycle, fatty acid oxydation and glutathione reduction.7. AN 162 inhibits the growth of fibroblasts without influence on mitosis.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 907-914 ◽  
Author(s):  
A. Attal ◽  
M. Brigodiot ◽  
P. Camacho ◽  
J. Manem

The purpose of this study is to gain a better understanding of the biological phenomena involved in the production of hydrogen sulfide in urban wastewater (UWW) systems. It is found that the UWW itself naturally possesses the biomass needed to consume the sulfates. These heterotrophic sulfate-reducing bacteria populations, though immediately active in strict anaerobic conditions, are present only in very low concentrations in the UWW. A concentration of them was studied within the pressure pipes, in the form of deposits, and this justifies the high concentrations of sulfides measured in certain wastewater networks. There are two reasons why the ferrous sulfate used as a treatment in any wastewater networks should not cause the production of additional sulfides. Firstly, the sulfate consumption kinetics are always too slow, relative to the residence time of the water in the pipe, for all of the sulfates to be consumed anyway. Secondly, the amount of assimilable carbon, soluble carbon, and carbon from suspended solid (SS) hydrolysis is insufficient.


Sign in / Sign up

Export Citation Format

Share Document