scholarly journals An Enhanced Spring-Particle Model for Red Blood Cell Structural Mechanics: Application to the Stomatocyte–Discocyte–Echinocyte Transformation

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Mingzhu Chen ◽  
Fergal J. Boyle

Red blood cells (RBCs) are the most abundant cellular element suspended in blood. Together with the usual biconcave-shaped RBCs, i.e., discocytes, unusual-shaped RBCs are also observed under physiological and experimental conditions, e.g., stomatocytes and echinocytes. Stomatocytes and echinocytes are formed from discocytes and in addition can revert back to being discocytes; this shape change is known as the stomatocyte–discocyte–echinocyte (SDE) transformation. To-date, limited research has been conducted on the numerical prediction of the full SDE transformation. Spring-particle RBC (SP-RBC) models are commonly used to numerically predict RBC mechanics and rheology. However, these models are incapable of predicting the full SDE transformation because the typically employed bending model always leads to numerical instability with severely deformed shapes. In this work, an enhanced SP-RBC model is proposed in order to extend the capability of this model type and so that the full SDE transformation can be reproduced. This is achieved through the leveraging of an advanced bending model. Transformed vesicle and RBC shapes are predicted for a range of reduced volume and reduced membrane area difference (MAD), and very good agreement is obtained in the comparison of predicted shapes with experimental observations. Through these predictions, vesicle and SDE transformation phase diagrams are developed and, importantly, in the SDE case, shape boundaries are proposed for the first time relating RBC shape categories to RBC reduced volume and reduced MAD.

2014 ◽  
Vol 20 (5) ◽  
pp. 1565-1575 ◽  
Author(s):  
Abdelhalim Zoukel ◽  
Lahcen Khouchaf ◽  
Jean Di Martino ◽  
David Ruch

AbstractA procedure has been developed to follow degradation of energy-dispersive spectroscopy (EDS) X-ray lateral resolution in a variable pressure scanning electron microscope. This procedure is based on evaluation of the EDS profile shape change for different experimental conditions. Some parameters affecting the X-ray resolution in high-vacuum mode have been taken into account. Good agreement between the simulated and experimental EDS profiles shows the reliability of the proposed procedure. A significant improvement in measurement of the EDS profile interfacial distance (DINT) has been achieved.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
L. F. Aranguren Caro ◽  
F. Alghamdi ◽  
K. De Belder ◽  
J. Lin ◽  
H. N. Mai ◽  
...  

Abstract Background Enterocytozoon hepatopenaei (EHP) is an enteric pathogen that affects Penaeus vannamei and Penaeus monodon shrimp in many SE Asian countries. In the western hemisphere, EHP was reported for the first time in 2016 in farmed P. vannamei in Venezuela. Anecdotal evidence suggests that EHP is more prevalent in grow-out ponds where the salinity is high (> 15 parts per thousand (ppt)) compared to grow-out ponds with low salinities (< 5 ppt). Considering that P. vannamei is an euryhaline species, we were interested in knowing if EHP can propagate in P. vannamei in low salinities. Results In this study, we described an experimental infection using fecal strings as a source inoculum. Specific Pathogen Free (SPF) P. vannamei were maintained at three different salinities (2 ppt, 15 ppt, and 30 ppt) while continuously challenged using feces from known EHP-infected P. vannamei over a period of 3 weeks. The fecal strings, used as a source of EHP inocula in the challenges, was sufficient to elicit an infection in shrimp maintained at the three salinities. The infectivity of EHP in shrimp reared at 2 ppt, 15 ppt, and 30 ppt salinities was confirmed by PCR and histopathology. The prevalence and the severity of the EHP infection was higher at 30 ppt than at 2 ppt and 15 ppt. Conclusion The data suggests that fecal strings are a reliable source of EHP inoculum to conduct experimental challenges via the fecal-oral route. An EHP infection can occur at a salinity as low as 2 ppt, however, the prevalence and the severity of the EHP infection is higher at a salinity of 30 ppt.


2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Umit Demirbas ◽  
Martin Kellert ◽  
Jelto Thesinga ◽  
Yi Hua ◽  
Simon Reuter ◽  
...  

AbstractWe present detailed experimental results with cryogenic Yb:YLF gain media in rod-geometry. We have comparatively investigated continuous-wave (cw) lasing and regenerative amplification performance under different experimental conditions. In the cw lasing experiments effect of crystal doping, cw laser cavity geometry and pump wavelength on lasing performance were explored. Regenerative amplification behavior was analyzed and the role of depolarization losses on performance was investigated. A recently developed temperature estimation method was also employed for the first time in estimating average crystal temperature under lasing conditions. It is shown that the thermal lens induced by transverse temperature gradients is the main limiting factor and strategies for future improvements are discussed. To the best of our knowledge, the achieved results in this study (375 W in cw, and 90 W in regenerative amplification) are the highest average powers ever obtained from this system via employing the broadband E//a axis.


1989 ◽  
Vol 44 (10) ◽  
pp. 1221-1227 ◽  
Author(s):  
W. Preetz ◽  
W. Kuhr

The mixed chloro-bromo-rhodates(III) [RhClnBr6-n]3-, n = 1-5, have been separated for the first time by ion exchange chromatography on diethylaminoethyl-cellulose. Due to the stronger trans-effect of Br, as compared with Cl, on treatment of [RhBr6]3- with conc. HCl nearly pure cis/fac-isomers for n = 2, 3, 4 are formed. The reaction of [RhCl6]3- with conc. HBr yields mixtures of the cis/trans-isomers for n = 2, 4, which cannot be separated, but mer-[RhCl3Br3]3 is formed stereospecifically. The IR and Raman spectra of all isolated mixed ligand complexes are completely assigned according to point groups Oh, D3d, C4v, C3v and C2v, supported by normal coordinate analyses based on a general valence force field. The good agreement of calculated and observed frequencies confirms the assignments. Due to the stronger trans-influence of Br as compared to Cl, in all asymmetric Cl—Rh—Br axes the Rh—Br bonds are strengthened and the Rh—Cl bonds are weakened, indicated by valence force constants for Rh—Br approximately 14% higher, for Rh—Cl 10% lower, as compared with the values calculated for symmetric Br—Rh—Br and Cl—Rh—Cl axes, respectively.


2004 ◽  
Vol 19 (12) ◽  
pp. 3607-3613 ◽  
Author(s):  
H. Iikawa ◽  
M. Nakao ◽  
K. Izumi

Separation by implemented oxygen (SIMOX)(111) substrates have been formed by oxygen-ion (16O+) implantation into Si(111), showing that a so-called “dose-window” at 16O+-implantation into Si differs from Si(100) to Si(111). In SIMOX(100), an oxygen dose of 4 × 1017/cm2 into Si(100) is widely recognized as the dose-window when the acceleration energy is 180 keV. For the first time, our work shows that an oxygen dose of 5 × 1017/cm2 into Si(111) is the dose-window for the formation of SIMOX(111) substrates when the acceleration energy is 180 keV. The difference between dose-windows is caused by anisotropy of the crystal orientation during growth of the faceted buried SiO2. We also numerically analyzed the data at different oxidation velocities for each facet of the polyhedral SiO2 islands. Numerical analysis results show good agreement with the experimental data.


2017 ◽  
Vol 6 (5) ◽  
pp. 107
Author(s):  
Caitlin Gearhart ◽  
Kurt A. Rosentrater

Because of the growth of gluten intolerance and Celiac disease, there is growing interest in development of gluten-free foods. Beyond just being gluten-free, such foods can also have other positive nutritional benefits to human health. Extrusion processing is commonly used to produce a wide variety of human food products. Gluten-free grains can be a processing challenge, however, due to lack of proper binding, which can lead to poor quality food products. This research explores how extrusion parameters impacted the quality of amaranth- and quinoa-based extrudates. The specific objectives of this project included extruding each of the grains, then measuring extrudate properties, such as color, unit density, expansion ratio, and durability. Both the quinoa and amaranth were extruded as raw grain, as well as ground to 2mm and 1mm particle sizes. Other experimental conditions included moisture contents of 20% and 40% (d.b.), and extruder screw speeds of 50 rpm and 100 rpm. All treatments were successfully extruded, and all extrudates had high quality attributes, making this the first time either quinoa or amaranth was extruded without any binding ingredients. This study provides information useful for commercial scale-up.


2011 ◽  
Vol 287-290 ◽  
pp. 1896-1901
Author(s):  
Zhi Kun Guo ◽  
Wan Xiang Chen ◽  
Qi Fan Wang ◽  
Yu Huang ◽  
Chao Pu Li ◽  
...  

The bearing capacities of one-way reinforced concrete beams with elastic supports are investigated in this paper. According to the nonlinear characteristics of the beams, the basic equations based on plastic theory of concrete are derived by considering the in-plane force effects that aroused by the constraints of supports when the beams deforming. It is indicated that the calculation results are in good agreement with experimental datum, and the influences of different supports on the bearing capacities of the beams are quantitatively given for the first time.


1989 ◽  
Vol 145 ◽  
Author(s):  
E. F. Schubert ◽  
T. D. Harris ◽  
J. E. Cunningham

AbstractOptical absorption and photoluminescence experiments are performed on GaAs doping superlattices, which have a δ-function-like doping profile of alternating n-type and p-type dopant sheets. Absorption and emission spectra reveal for the first time the clear signature of quantum-confined interband transitions. The peaks of the experimental absorption and luminescence spectra are assigned to calculated energies of quantum-confined transitions with very good agreement. It is shown that the employment of the δ-doping technique results in improved optical properties of doping superlattices.


2012 ◽  
Vol 20 (1) ◽  
pp. 166-171
Author(s):  
Vasil Koteski ◽  
Jelena Belošević-Čavor ◽  
Petro Fochuk ◽  
Heinz-Eberhard Mahnke

The lattice relaxation around Ga in CdTe is investigated by means of extended X-ray absorption spectroscopy (EXAFS) and density functional theory (DFT) calculations using the linear augmented plane waves plus local orbitals (LAPW+lo) method. In addition to the substitutional position, the calculations are performed for DX- and A-centers of Ga in CdTe. The results of the calculations are in good agreement with the experimental data, as obtained from EXAFS and X-ray absorption near-edge structure (XANES). They allow the experimental identification of several defect structures in CdTe. In particular, direct experimental evidence for the existence of DX-centers in CdTe is provided, and for the first time the local bond lengths of this defect are measured directly.


Sign in / Sign up

Export Citation Format

Share Document