Ball Grid Array Interconnection Properties of Solderable Polymer–Solder Composites With Low-Melting-Point Alloy Fillers

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Byung-Seung Yim ◽  
Young-Eui Shin ◽  
Jong-Min Kim

In this work, a novel ball grid array (BGA) interconnection process has been developed using solderable polymer–solder composites (SPCs) with low-melting-point alloy (LMPA) fillers to enhance the processability of the conventional capillary underfill technique and to overcome the limitations of the no-flow underfill technique. To confirm the feasibility of the proposed technique, a BGA interconnection test was performed using four types of SPCs with a different LMPA concentration (from 0 to 5 vol %). After the BGA interconnection process, the interconnection characteristics, such as morphology of conduction path and electrical properties of the BGA assemblies, were inspected and compared. The results indicated that BGA assemblies using SPC without LMPA fillers showed weak conduction path formation, including open circuit (solder bump loss) or short circuit formation because of the expansion of air voids within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SPC with 3 vol % LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the relatively low-reflow peak temperature and favorable selective wetting behavior of molten LMPAs for the solder bumps and Cu metallizations.

Author(s):  
Otwin Breitenstein

Abstract The electronic properties of solar cells, particularly multicrystalline silicon-based ones, are distributed spatially inhomogeneous, where regions of poor quality may degrade the performance of the whole cell. These inhomogeneities mostly affect the dark current-voltage (I-V) characteristic, which decisively affects the efficiency. Since the grid distributes the local voltage homogeneously across the cell and leads to lateral balancing currents, local light beam-induced current methods alone cannot be used to image local cell efficiency parameters. Lock-in thermography (LIT) is the method of choice for imaging inhomogeneities of the dark I-V characteristic. This contribution introduces a novel method for evaluating a number of LIT images taken at different applied biases. By pixel-wise fitting the data to a two diode model and taking into account local series resistance and short circuit current density data, realistically simulated images of the other cell efficiency parameters (open circuit voltage, fill factor, and efficiency) are obtained. Moreover, simulated local and global dark and illuminated I-V characteristics are obtained, also for various illumination intensities. These local efficiency data are expectation values, which would hold if a homogeneous solar cell had the properties of the selected region of the inhomogeneous cell. Alternatively, also local efficiency data holding for the cell working at its own maximum power point may be generated. The amount of degradation of different cell efficiency parameters in some local defect positions is an indication how dangerous these defects are for degrading this parameter of the whole cell. The method allows to virtually 'cut out' certain defects for checking their influence on the global characteristics. Thus, by applying this method, a detailed local efficiency analysis of locally inhomogeneous solar cells is possible. It can be reliably predicted how a cell would improve if certain defects could be avoided. This method is implemented in a software code, which is available.


1987 ◽  
Vol 253 (6) ◽  
pp. R917-R921
Author(s):  
S. Sabatini ◽  
N. A. Kurtzman

Unidirectional 45Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (JnetCa) was secretory (serosa to mucosa) and was 388.3 +/- 84.5 pmol.mg-1.h-1 (n = 20, P less than 0.001). Ouabain (5 X 10(-4) M) reversed JnetCa to an absorptive flux (serosal minus mucosal flux = -195.8 +/- 41.3 pmol.mg-1.h-1; n = 20, P less than 0.001). Amiloride (1 X 10(-5) M) reduced both fluxes such that JnetCa was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, JnetCa decreased to approximately one-third of control value but remained secretory (138.4 +/- 54.3 pmol.mg-1.h-1; n = 9, P less than 0.025). When ouabain was added under short-circuit conditions, JnetCa was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45Ca content was approximately equal to 30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca2+-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na+-K+-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1023
Author(s):  
Arigela Satya Veerendra ◽  
Akeel A. Shah ◽  
Mohd Rusllim Mohamed ◽  
Chavali Punya Sekhar ◽  
Puiki Leung

The multilevel inverter-based drive system is greatly affected by several faults occurring on switching elements. A faulty switch in the inverter can potentially lead to more losses, extensive downtime and reduced reliability. In this paper, a novel fault identification and reconfiguration process is proposed by using discrete wavelet transform and auxiliary switching cells. Here, the discrete wavelet transform exploits a multiresolution analysis with a feature extraction methodology for fault identification and subsequently for reconfiguration. For increasing the reliability, auxiliary switching cells are integrated to replace faulty cells in a proposed reduced-switch 5-level multilevel inverter topology. The novel reconfiguration scheme compensates open circuit and short circuit faults. The complexity of the proposed system is lower relative to existing methods. This proposed technique effectively identifies and classifies faults using the multiresolution analysis. Furthermore, the measured current and voltage values during fault reconfiguration are close to those under healthy conditions. The performance is verified using the MATLAB/Simulink platform and a hardware model.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2191
Author(s):  
Xiaolan Wang ◽  
Xiaoping Zou ◽  
Jialin Zhu ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

It is crucial to find a good material as a hole transport layer (HTL) to improve the performance of perovskite solar cells (PSCs), devices with an inverted structure. Polyethylene dioxythiophene-poly (styrene sulfonate) (PEDOT:PSS) and inorganic nickel oxide (NiOx) have become hotspots in the study of hole transport materials in PSCs on account of their excellent properties. In our research, NiOx and PEDOT: PSS, two kinds of hole transport materials, were prepared and compared to study the impact of the bottom layer on the light absorption and morphology of perovskite layer. By the way, some experimental parameters are simulated by wx Analysis of Microelectronic and Photonic Structures (wxAMPS). In addition, thin interfacial layers with deep capture levels and high capture cross sections were inserted to simulate the degradation of the interface between light absorption layer and PEDOT:PSS. This work realizes the combination of experiment and simulation. Exploring the mechanism of the influence of functional layer parameters plays a vital part in the performance of devices by establishing the system design. It can be found that the perovskite film growing on NiOx has a stronger light absorption capacity, which makes the best open-circuit voltage of 0.98 V, short-circuit current density of 24.55 mA/cm2, and power conversion efficiency of 20.01%.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


Solar Energy ◽  
2021 ◽  
Vol 213 ◽  
pp. 198-210
Author(s):  
Ahsan Nadeem ◽  
Hadeed Ahmed Sher ◽  
Ali Faisal Murtaza ◽  
Nisar Ahmed

Sign in / Sign up

Export Citation Format

Share Document