A Helmholtz Potential Approach to the Analysis of Guided Wave Generation During Acoustic Emission Events

Author(s):  
Mohammad Faisal Haider ◽  
Victor Giurgiutiu

This paper addresses the predictive simulation of acoustic emission (AE) guided waves that appear due to sudden energy release during incremental crack propagation. The Helmholtz decomposition approach is applied to the inhomogeneous elastodynamic Navier–Lame equations for both the displacement field and body forces. For the displacement field, we use the usual decomposition in terms of unknown scalar and vector potentials, Φ and H. For the body forces, we hypothesize that they can also be expressed in terms of excitation scalar and vector potentials, A* and B*. It is shown that these excitation potentials can be traced to the energy released during an incremental crack propagation. Thus, the inhomogeneous Navier–Lame equation has been transformed into a system of inhomogeneous wave equations in terms of known excitation potentials A* and B* and unknown potentials Φ and H. The solution is readily obtained through direct and inverse Fourier transforms and application of the residue theorem. A numerical study of the one-dimensional (1D) AE guided wave propagation in a 6 mm thick 304-stainless steel plate is conducted. A Gaussian pulse is used to model the growth of the excitation potentials during the AE event; as a result, the actual excitation potential follows the error function variation in the time domain. The numerical studies show that the peak amplitude of A0 signal is higher than the peak amplitude of S0 signal, and the peak amplitude of bulk wave is not significant compared to S0 and A0 peak amplitudes. In addition, the effects of the source depth, higher propagating modes, and propagating distance on guided waves are also investigated.

2006 ◽  
Vol 13-14 ◽  
pp. 69-76 ◽  
Author(s):  
Paul D. Wilcox ◽  
C.K. Lee ◽  
Jonathan J. Scholey ◽  
Michael I. Friswell ◽  
M.R. Wisnom ◽  
...  

Acoustic emission (AE) techniques have obvious attractions for structural health monitoring (SHM) due to their extreme sensitivity and low sensor density requirement. A factor preventing the adoption of AE monitoring techniques in certain industrial sectors is the lack of a quantitative deterministic model of the AE process. In this paper, the development of a modular AE model is described that can be used to predict the received time-domain waveform at a sensor as a result of an AE event elsewhere in the structure. The model is based around guided waves since this is how AE signals propagate in many structures of interest. Separate modules within the model describe (a) the radiation pattern of guided wave modes at the source, (b) the propagation and attenuation of guided waves through the structure, (c) the interaction of guided waves with structural features and (d) the detection of guided waves with a transducer of finite spatial aperture and frequency response. The model is implemented in the frequency domain with each element formulated as a transfer function. Analytic solutions are used where possible; however, by virtue of its modular architecture it is straightforward to include numerical data obtained either experimentally or through finite element analysis (FEA) at any stage in the model. The paper will also show how the model can used, for example, to produce probability of detection (POD) data for an AE testing configuration.


2018 ◽  
Vol 30 (9) ◽  
pp. 1318-1338 ◽  
Author(s):  
Mohammad Faisal Haider ◽  
Victor Giurgiutiu

This article presents a theoretical and numerical analysis of guided wave released during an acoustic emission event using excitation potentials. Theoretical formulation showed that guided wave generated using excitation potentials follows the Rayleigh–Lamb equation. The numerical studies predict the out-of-plane displacement of acoustic emission guided wave on the plate surface at some distance away from the source. Parameter studies were performed to evaluate the effect of (1) pressure and shear potentials acting alone and in combination, (2) plate thickness, (3) source depth, (4) rise time, and (5) propagating distance away from the source. Numerical results showed that peak amplitude of S0 signal increases with increasing plate thickness, whereas the peak amplitude of A0 signal initially decreases and then increases with increasing plate thickness. Regarding the source depth, it was found that peak amplitude of S0 signal decreases and A0 signal increases with increasing source depth. Peak time showed a notable contribution to the low-frequency component of A0 signal. There were large losses in S0 and A0 peak signal amplitude over the propagation distance from 100 to 500 mm.


2006 ◽  
Vol 321-323 ◽  
pp. 784-787
Author(s):  
Chong Myoung Lee ◽  
Joseph L. Rose ◽  
Wei Luo ◽  
Youn Ho Cho

Rail represents one of the most important means of transportation. Many nondestructive testing methods have been used to find defects in rail. The guided wave technique is the most efficient because of its long propagation characteristic along the rail. Potential for detecting transverse cracks exists whereas standard bulk wave technique could miss the cracks. The wave structure of the rail cross-section for a particular loading condition of modes and frequencies is an important feature. In this paper, the propagation and scattering patterns of guided waves in a rail are studied using finite element methods. The wave structures are also examined. Various multiple defect situations and rail boundary conditions can also be studied.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1058
Author(s):  
Aadhik Asokkumar ◽  
Elena Jasiūnienė ◽  
Renaldas Raišutis ◽  
Rymantas Jonas Kažys

This article compares different air-coupled ultrasonic testing methods to characterize impact-type defects in a pultruded quasi-isotropic glass fiber-reinforced plastic (GFRP) composite plate. Using the air-coupled transducers, comparisons among three methods were performed, namely, bulk-wave through transmission, single-side access using guided waves, and ultrasonic-guided wave tomography. The air coupled through transmission technique can determine the size and shape of impact-type defects with a higher resolution, but with the consequence of time consumption and, more importantly, the necessity of access to both sides of the sample. The guided wave technique on the other hand, allows a single-side inspection and is relatively fast. It can be used to determine the size of the defect using ultrasonic B-scan, but the exact shape of the defect will be compromised. Thus, in this article, to determine the shape of the defect, application of the parallel beam tomographic reconstruction technique using guided Lamb waves is demonstrated. Furthermore, a numerical finite element simulation was performed to study the effects of guided wave propagation in the composite sample and interaction with the internal defect. Lastly, the results from the experiments of different techniques were compared according to possibilities of defect sizing and determination of its shape.


2021 ◽  
pp. 87-131
Author(s):  
Vykintas Samaitis ◽  
Elena Jasiūnienė ◽  
Pawel Packo ◽  
Damira Smagulova

AbstractUltrasonic inspection is a well recognized technique for non-destructive testing of aircraft components. It provides both local highly sensitive inspection in the vicinity of the sensor and long-range structural assessment by means of guided waves. In general, the properties of ultrasonic waves like velocity, attenuation and propagation characteristics such as reflection, transmission and scattering depend on composition and structural integrity of the material. Hence, ultrasonic inspection is commonly used as a primary tool for active inspection of aircraft components such as engine covers, wing skins and fuselages with the aim to detect, localise and describe delaminations, voids, fibre breakage and ply waviness. This chapter mainly focuses on long range guided wave structural health monitoring, as aircraft components require rapid evaluation of large components preferably in real time without the necessity for grouding of an aircraft. In few upcoming chapters advantages and shortcommings of bulk wave and guided wave ultrasonic inspection is presented, fundamentals of guided wave propagation and damage detection are reviewed, the reliability of guided wave SHM is discussed and some recent examples of guided wave applications to SHM of aerospace components are given.


2007 ◽  
Vol 85 (7) ◽  
pp. 707-731 ◽  
Author(s):  
J Sadler ◽  
R Gr Maev

The subject of Lamb waves contains a vast field of literature comprising many individual topics, with the current focus being the effective creation and use of Lamb waves in the fields of material characterization and nondestructive evaluation (NDE). This review chooses to focus on the more recent literature dealing with Lamb waves, giving introductions to a variety of topics. Because of the large amount of literature dealing with Lamb waves, many of the sections of this paper could themselves be expanded into their own literature review. This review begins with a brief introduction of Lamb waves comparing them to the acoustic bulk wave, and Rayleigh wave, and outlines the physics of a guided wave. It discusses the advantages of using guided waves, and theoretical techniques to model Lamb waves. In addition, the review discusses some of the various methods for the detection and creation of Lamb waves; techniques to detect, identify, and extract the mode from the acoustic signal; the use of Lamb waves in material characterization; flaw detection and flaw measurement; and finally examines the scattering of Lamb waves at plate ends and joints. While much of this work is experimentally based in nature, this review has attempted to also include theoretical work when possible. PACS Nos.: 43.90.+v, 81.70.Cv


Author(s):  
Kuanfang He ◽  
Zhi Tan ◽  
Yong Cheng ◽  
Xuejun Li

The propagation characteristic of guided waves is important to acoustic emission nondestructive detection for the structural integrity of engineering components. The finite element method is introduced to study the propagation of guided waves in plate structure with different materials, cracks and coating metal. The displacement contours and wave curve at different receiving positions are examined first for the propagation characteristics of guided waves in plate structure with different homogeneous material of steel 45 and GCr15. Next, the interface reflection, refraction and diffraction characteristics of guided waves in plate structure with cracks and steel 45 with coating metal of aluminium 2024 are investigated. Finally, these FE results are compared with the mechanical pencil lead fracture experiment results. The results of this study clearly illustrate the accuracy and reasonableness of the finite element method to predict propagation characteristic of guided wave.


2021 ◽  
pp. 147592172110053
Author(s):  
Qian Ji ◽  
Li Jian-Bin ◽  
Liu Fan-Rui ◽  
Zhou Jian-Ting ◽  
Wang Xu

The seven-wire strands are the crucial components of prestressed structures, though their performance inevitably degrades with the passage of time. The ultrasonic guided wave methods have been intensely studied, owing to its tremendous potential for full-scale applications, among the existing nondestructive testing methods, for evaluating the stress status of strands. We have employed the theoretical and finite element methods to solve the dispersion curve of single wire and steel strands under various boundary conditions. Thereafter, the singular value decomposition was adopted to work with the simulated and experimental signals for extracting a feature vector that carries valuable stress status information. The effectiveness of the vector was verified by analyzing the relationship between the vector and the stress level. The vector was also used as an input to establish a support vector regression model. The accuracy of the model has been discussed for different sample sizes. The results show that the fundamental mode dispersion curve offset on the high-frequency part and cut-off frequency increases as the boundary constraints enhance. Simulated and experimental results have demonstrated the effectiveness and potential of the proposed support vector regression method for evaluating the stress level in the strands. This method performs well even at low stress levels and the reliability can be enhanced by adding more samples.


Author(s):  
Kuan Ye ◽  
Kai Zhou ◽  
Ren Zhigang ◽  
Ruizhe Zhang ◽  
Chunsheng Li ◽  
...  

The power transmission tower’s ground electrode defect will affect its normal current dispersion function and threaten the power system’s safe and stable operation and even personal safety. Aiming at the problem that the buried grounding grid is difficult to be detected, this paper proposes a method for identifying the ground electrode defects of transmission towers based on single-side multi-point excited ultrasonic guided waves. The geometric model, ultrasonic excitation model, and physical model are established, and the feasibility of ultrasonic guided wave detection is verified through the simulation and experiment. In actual inspection, it is equally important to determine the specific location of the defect. Therefore, a multi-point excitation method is proposed to determine the defect’s actual position by combining the ultrasonic guided wave signals at different excitation positions. Besides, the precise quantification of flat steel grounding electrode defects is achieved through the feature extraction-neural network method. Field test results show that, compared with the commercial double-sided excitation transducer, the single-sided excitation transducer proposed in this paper has a lower defect quantization error in defect quantification. The average quantization error is reduced by approximately 76%.


Sign in / Sign up

Export Citation Format

Share Document