Porous Materials Under Shock Loading as a Two-Phase Mixture: The Effect of the Interstitial Air

2017 ◽  
Vol 140 (5) ◽  
Author(s):  
A. D. Resnyansky

Deformation and mixing of solid particles in porous materials are typical consequences under shock compression and are usually considered as the major contributors to energy dissipation during shock compression while a contribution from the interaction between the solid and gaseous phases attracts less attention. The present work illustrates the phase interaction process by mesomechanical hydrocode modeling under different conditions of the interstitial gaseous phase. A two-phase analytical approach focusing on the role of thermal nonequilibrium between the phases and an advanced two-phase model complement the mesomechanical analysis by demonstrating a similar trend due to the effect of pressure in the interstitial air.

1996 ◽  
Vol 2 (3) ◽  
pp. 113-128 ◽  
Author(s):  
Sundar Ramamurthy ◽  
Michael P. Mallamaci ◽  
Catherine M. Zimmerman ◽  
C. Barry Carter ◽  
Peter R. Duncombe ◽  
...  

Dense, polycrystalline MgO was infiltrated with monticellite (CaMgSiO4) liquid to study the penetration of liquid along the grain boundaries of MgO. Grain growth was found to be restricted with increasing amounts of liquid. The inter-granular regions were generally found to be comprised of a two-phase mixture: crystalline monticellite and a glassy phase rich in the impurities present in the starting MgO material. MgO grains act as seeding agents for the crystallization of monticellite. The location and composition of the glassy phase with respect to the MgO grains emphasizes the role of intergranular liquid during the devitrification process in “snowplowing” impurities present in the matrix.


2007 ◽  
Vol 9 (6) ◽  
pp. 695-697 ◽  
Author(s):  
He Zhenghao ◽  
Xu Huaili ◽  
Bai Jing ◽  
Yu Fusheng ◽  
Hu Feng ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 8859
Author(s):  
Xu Peng ◽  
Guoning Rao ◽  
Bin Li ◽  
Shunyao Wang ◽  
Wanghua Chen

The interaction between a shock wave and solid particles involves complex gas–solid two-phase flow, which is widely used in industrial processes. Theoretical analysis, an experimental test, and simulation were combined to investigate the interaction process between a shock wave and quartz sand particles. The variation of physical parameters of the two phases during the interaction process was considered theoretically. Then, a novel vertical shock tube generator was employed to record the pressure attenuation and dispersion process of solid particles. Finally, the complex gas–solid two-phase flow was simulated based on the computational fluid dynamics method. The results showed that a nonequilibrium state was formed during the interaction process and momentum exchange generated, resulting in a drag force of the shock wave on the particles. The shock intensity obviously attenuated after the shock wave passed through the solid particles, and this part of the energy was work on the solid particles to drive their dispersion. A three-dimensional annular vortex was generated around the solid particles due to the entrainment effect of airflow. Under the shock wave action of 1.47 Ma, the three types of solid particles with average diameters of 2.5, 0.95, and 0.42 mm presented different motion laws. The particles with smaller size were easier to disperse, and the cloud that formed was larger and more uniform.


2018 ◽  
Vol 180 ◽  
pp. 01001
Author(s):  
Marcin Zych

The article constitutes an overview of the application of radiometric methods in the research of two-phase flows: liquid-solid particles and liquid-gas flows. The methods which were used were described on the basis of the experiments which were conducted in the Water Laboratory of the Wrocław University of Environmental and Life Sciences and in the Sedimentological Laboratory of the Faculty of Geology, Geophysics and Environmental Protection, AGH-UST in Kraków. The advanced mathematical methods for the analysis of signals from scintillation probes that were applied enable the acquisition of a number of parameters associated with the flowing two-phase mixture, such as: average velocities of the particular phases, concentration of the solid phase, and void fraction for a liquid-gas mixture. Despite the fact that the application of radioactive sources requires considerable carefulness and a number of state permits, in many cases these sources become useful in the experiments which are presented.


2011 ◽  
Vol 383-390 ◽  
pp. 4955-4961
Author(s):  
Wen Jun Yao ◽  
Zheng Hao He ◽  
He Ming Deng

Multi-phase mixture (MPM) discharge has the common characteristics of randomness with air but more complex. How about the statistical rule of MPM discharge ? This is not only a fundamental problem for discharge research, but it has its own strong applied and practical characteristics. The air-solid two-phase mixtures(ASTPM) are employed to study and carry out some experiments for investigating the development and breakdown of MPM discharge under AC voltage. The results from experimental data show that the AC breakdown voltage and corona-inception voltage will drop when the solid particles are added to the discharge chamber with different permittivity and volume fraction. And there is no influence in gas flow and the corona current.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 232
Author(s):  
Cristiana Di Cristo ◽  
Massimo Greco ◽  
Michele Iervolino ◽  
Andrea Vacca

The evaluation of the impact force on structures due to a flood wave is of utmost importance for estimating physical damage and designing adequate countermeasures. The present study investigates, using 2D shallow-water approximation, the morphodynamics and forces caused by a dam-break wave against a rigid obstacle in the presence of an erodible bed. A widely used coupled equilibrium model, based on the two-dimensional Saint–Venant hydrodynamic equations combined with the sediment continuity Exner equation (SVEM), is compared with a more complex two-phase model (TPM). Considering an experimental set-up presented in the literature with a single rigid obstacle in a channel, two series of tests were performed, assuming sand or light sediments on the bottom. The former test is representative of a typical laboratory experiment, and the latter may be scaled up to a field case. For each test, two different particle diameters were considered. Independently from the particle size, it was found that in the sand tests, SVEM performs similarly to TPM. In the case of light sediment, larger differences are observed, and the SVEM predicts a higher force of about 26% for both considered diameters. The analysis of the flow fields and the morphodynamics shows these differences can be essentially ascribed to the role of inertia of the solid particles.


2010 ◽  
Vol 648 ◽  
pp. 381-404 ◽  
Author(s):  
C. MERUANE ◽  
A. TAMBURRINO ◽  
O. ROCHE

The effects of the ambient fluid on granular flow dynamics are poorly understood and commonly ignored in analyses. In this article, we characterize and quantify these effects by combining theoretical and experimental analyses. Starting with the mixture theory, we derive a set of two-phase continuum equations for studying a compressible granular flow composed of homogenous solid particles and a Newtonian ambient fluid. The role of the ambient fluid is then investigated by studying the collapse and spreading of two-dimensional granular columns in air or water, for different solid particle sizes and column aspect (height to length) ratios, in which the front speed is used to describe the flow. The combined analysis of experimental measurements and numerical solutions shows that the dynamics of the solid phase cannot be explained if the hydrodynamic fluid pressure and the drag interactions are not included in the analysis. For instance, hydrodynamic fluid pressure can hold the reduced weight of the solids, thus inducing a transition from dense-compacted to dense-suspended granular flows, whereas drag forces counteract the solids movement, especially within the near-wall viscous layer. We conclude that in order to obtain a realistic representation of gravitational granular flow dynamics, the ambient fluid cannot be neglected.


1983 ◽  
Vol 105 (3) ◽  
pp. 215-222 ◽  
Author(s):  
M. T. Benchaita ◽  
P. Griffith ◽  
E. Rabinowicz

An experimental and theoretical study on erosion of a metallic plate by solid particles entrained in a liquid jet has been performed. The test section involved a two-phase flow jet of liquid water and silica-sand impinging on a metallic plate upon which erosion occurred. In combining the fluid mechanics of particle suspension in a liquid and a model of weight removal from the plate (by a single abrasive particle), an analytical approach is developed to determine the distribution and amount of erosion along a metallic plate. This model of erosion distribution along the metallic plate can be used as a tool to predict erosive damage in industrial equipment such as pipe bends, elbows, subsurface safety valves, and pipe contractions.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Sign in / Sign up

Export Citation Format

Share Document