Investigation of Mechanical Properties of Mono- and Multi-layer Alumina and Ceria Films Using Finite Element Modeling and Nanoindentation Experiments

Author(s):  
Sabina Cherneva ◽  
Desislava Guergova ◽  
Roumen Iankov ◽  
Dimitar Stoychev

Important from exploitation point of view mechanical properties of single-layer, double-layer, and mixed alumina and ceria films and their stainless steel (SS) substrate were investigated by means of nanoindentation experiments. As a result, we obtained the experimental load–displacement curves and calculated the indentation hardness (HIT) and indentation modulus (EIT), by means of Oliver and Pharr approximation method. Numerical simulations of the process of nanoindentation by means of finite element method were performed as well, in order to obtain more information about the plastic properties of the investigated films. The obtained results show that the mixed Al2O3+Ce2O3 film, obtained at dominant concentration of cerium ions in the working electrolyte, has the highest indentation hardness and modulus, followed by the single Ce2O3-CeO2 film, the mixed Al2O3+Ce2O3 film, obtained at dominant concentration of aluminum ions in the working electrolyte, the double Ce2O3-CeO2/Al2O3 layer, and single Al2O3 layer.

2015 ◽  
Vol 752-753 ◽  
pp. 322-325
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek ◽  
...  

In this paper, the effect of the electron beam irradiation on the indentation hardness, indentation modulus and indentation creep have been studied by means of the Depth sensing indentation (DSI). Cross-linking is a process in which polymer chains are associated through chemical bonds. Radiation doses of 33, 66 and 99 kGy were used for unfilled polyamide 6 with the 7% crosslinking agent (triallyl isocyanurate). Beta irradiation of the examined thermoplastic caused the growth of values of material parameters as micro-hardness, indentation modulus or indentation creep etc. From this point of view, there may be new application in areas with mechanical properties higher than their original properties. This study compared the mechanical properties of irradiated and non-irradiated PA6.


2018 ◽  
Vol 784 ◽  
pp. 44-48 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Aleš Materna

Deformation mechanisms and mechanical properties of Fe3(wt.%)Si single crystal in two different orientations were investigated by spherical indentation. For correct interpretation of measured data and better understanding of the deformation mechanisms under the contact area, finite element simulations were carried out and resolved shear stress in available slip systems was computed. Pop-in behavior, differences in hardness, indentation modulus and shapes of residual imprints were observed and associated with different activation of slip.


2018 ◽  
Vol 784 ◽  
pp. 49-54
Author(s):  
Peter Burik ◽  
Ladislav Pešek ◽  
Zuzana Andršová ◽  
Pavel Kejzlar

Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. Measuring the local properties (indentation hardness HIT, indentation modulus EIT, indentation energy: total Wtotal, elastic Welast, plastic Wplast) of each microstructure component separately in multiphase materials gives information that is valuable for the development of new materials and for modelling. The mechanical properties of materials measured by DSI are affected by the experimental procedure, by the measurement conditions and factors which result from the material characteristics and device construction. We have to determine the effect of individual factors on the measurement in order to reach the repeatability and to allow the comparing the mechanical properties of the material. The aim of this investigation is to determine the measurement factors that affect indentation hardness of individual microstructural components and global mechanical properties of thin steel sheets. We investigated the factors which result from the material characteristics (crystallographic orientation of grain, grain boundary and anisotropy), preparation of the sample surface (roughness of sample surface) and method of measurement (pile-up, ISE).


Author(s):  
Zhaohui Shan ◽  
Suresh K. Sitaraman

Titanium thin films have been widely used in microelectronics due to their good adhesion to substrates, such as Silicon wafer and Quartz. However, mechanical behavior of Titanium thin films has not been well characterized. This paper presents a methodology that combines the nanoindentation technique and finite element modeling to characterize the mechanical (elastic and plastic) properties of thin film with its application on Titanium thin film deposited on silicon substrate. The results show that the elastic properties (Young’s modulus) of the Titanium thin film does not change much from the bulk Titanium, and the plastic properties (yield stress and strain hardening exponent) of the Titanium thin film are higher than those of bulk Titanium. This method is also applicable for the study of mechanical properties of other thin films and small volume materials.


Author(s):  
Michae¨l Martinez ◽  
George Brown

The development of finite element analysis, in terms of simulation power and theoretical model accuracy, enables one to understand and simulate industrial processes more precisely, especially those involving non linear behaviour and analysis. Reeled pipe technology is one of these, and has a lot to gain from this increasing efficiency. In the reel-lay process the pipe is first reeled onto a drum on a vessel for transportation. During offshore installation the pipe is unreeled, straightened and deployed into the sea. During the process, the pipe is fully and cyclically plastified. Plastification modifies the pipe properties, which is not by itself detrimental but should be understood by the designer. Pipe properties are affected in three ways: geometrical shape – reeling and straightening induce some residual ovalisation; mechanical properties – yield stress, hardening slope, isotropy are modified; and fatigue properties. Technip and IFP have studied these property evolutions for many years, both from an experimental and a numerical point of view. The present paper discusses the first two points. A wide experimental programme has been performed. Full scale pipes were reeled and straightened on a bending rig device especially built for that purpose. Pipe ovalisation was monitored through the whole process. Pipe mechanical properties were also fully characterised in the pipe axial, hoop and thickness directions, both in tension and compression, before and after reeling process. Extruded and UOE pipes were tested and characterised. Pipe initial properties are dependent on the manufacturing process but they are modified by the reeling process. Reeling induces some anisotropy that cannot be properly accounted for by usual plasticity models. Finite element simulations with Abaqus software, using the material behaviour of unreeled pipe, underestimate stiffness evolution in the hoop direction and overestimate ovalisation induced by the reeling process. Anisotropy has indeed a great effect on ovalisation that results from an interaction between axial and hoop loading. Hardening is also a key parameter. A new plasticity model has been written in an Abaqus User Material Model, known as UMAT. The new model is based on an anisotropic Hill criterion and special attention is paid to the hardening. This new model reduces by more than two the error on ovality estimation, and gives a realistic prediction of material anisotropy evolution through the process. Although, the tuning of the model coefficients is more complex than for usual models, its use is quite straightforward and does not increase computation time.


2019 ◽  
Vol 56 (1) ◽  
pp. 65-70
Author(s):  
Gheorghe Radu Emil Maries ◽  
Constantin Bungau ◽  
Dan Chira ◽  
Traian Costea ◽  
Danut-Eugeniu Mosteanu

This paper analyzes the indentation hardness and the indentation elastic modulus variation depending on the variation of the grind percentage of polymer, when the other factors that can influence the injection molding remain unchanged. The analyzed polymers were: acrylonitrile butadiene styrene ABS MAGNUM 3453, polyamide PA 6.6 TECHNYL AR218V30 Blak and polyoxymethylene POM EUROTAL C9 NAT. The samples that were studied had different compositions in new and grinding material. The G-Series Basic Hardness Modulus at a Depth method was used. The increase of the grind percentage of ABS (from 0 to 100 %) leads to insignificant changes in the indentation hardness, indentation modulus, and maximum force applied to samples of tested material. The maximum hardness (0.137 GPa) of PA 6.6 is recorded in the case of the sample with 80% grind content, and the maximum hardness of POM is recorded as well in the case of the sample with 80% grind content, as being 0.215 GPa. The variation of the grind content in the analyzed samples determines changes in the evaluated parameters, depending on the type of polymer. Combining the new material with grind in proportions experimentally established for each techno polymer leads to changes in their mechanical properties.


2019 ◽  
Vol 952 ◽  
pp. 172-179
Author(s):  
Martin Ovsik ◽  
Michal Stanek ◽  
Adam Dockal ◽  
Martin Reznicek ◽  
Lenka Hylova

Surface properties are important aspect for correct function of construction (technical) parts. By improving mechanical properties of surface, an increase of abrasion resistance and wear resistance is reached. Longevity and economical aspect have an important role in final useful properties of product. Measurement of surface properties was done by ultra-nanoindentation technique (UNHT3), this is the best tool available right now, this technique is based on instrumented testing. Surface properties were modified by ionized radiation, that caused the creation of crosslinked structure in polyethylene. During radiation a three dimensional network is created, that improves final properties of product such as: hardness, elasticity modulus, thermal stability, etc. During ionized radiation there are two actions that take place at the same time, crosslinking and degradation. Goal of this paper is to consider how radiation intensity affects surface properties (indentation hardness, indentation modulus, deformation work, etc.) Another goal of this paper is to find out the optimal dose of radiation, that will cause more three dimensional crosslinking and less degradation as degradation causes decrease in mechanical properties.


2016 ◽  
Vol 699 ◽  
pp. 43-48
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Vojtech Senkerik

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Micro-mechanical changes in the surface layer of glass-fiber filled PA 66 modified by beta radiation were measured by the Depth Sensing Indentation - DSI method on samples which were non-irradiated and irradiated by different doses of the β - radiation. The specimens were prepared by injection technology and subjected to radiation doses of 0, 33, 66 nad 99 kGy. The change of micro-mechanical properties is greatly manifested mainly in the surface layer of the modified polypropylene where a significant growth of micro-hardness values can be observed. Indentation modulus increased from 1.8 to 3.0 GPa (increasing about 66%) and indentation hardness increased from 87 to 157 MPa (increasing about 80%). This research paper studies the influence of the dose of irradiation on the micro-mechanical properties of semi-crystalline polyamide 66 filled by 30% glass fiber at room temperature. The study is carried out due to the ever-growing employment of this type of polymer.


2014 ◽  
Vol 633-634 ◽  
pp. 44-51
Author(s):  
Fue Han ◽  
Chang Qing Chen ◽  
Ya Peng Shen

Mechanical properties of the nanoporous film with the relative density of can be determined using the nanoindentation. Using the 3D finite element method, the force-penetration curves are discussed. The elastic and plastic properties of the nanoporous membranes are derived from the loading-unloading curves.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 505
Author(s):  
Michael Kucher ◽  
Martin Dannemann ◽  
Niels Modler ◽  
Martina Romy Bernhard ◽  
Christian Hannig ◽  
...  

The extensive knowledge of root dentin’s mechanical properties is necessary for the prediction of microstructural alterations and the teeth’s deformations as well as their fracture behavior. Standardized microindentation tests were applied to apical, medial, and cervical root sections of a mandibular human first molar to determine the spatial distribution of the hard tissue’s properties (indentation modulus, indentation hardness, Martens hardness, indentation creep). Using an indentation mapping approach, the inhomogeneity of mechanical properties in longitudinal as well as in transversal directions were measured. As a result, the tooth showed strongly inhomogeneous material properties, which depended on the longitudinal and transversal positions. In the transversal cutting planes of the cervical, medial, apical sections, the properties showed a comparable distribution. A statistical evaluation revealed an indentation modulus between 12.2 GPa and 17.8 GPa, indentation hardness between 0.4 GPa and 0.64 GPa and an indentation creep between 8.6% and 10.7%. The established standardized method is a starting point for further investigations concerning the intensive description of the inhomogeneous mechanical properties of human dentin and other types of dentin.


Sign in / Sign up

Export Citation Format

Share Document