On the Feasibility of Surface-Film Lubricated Cold Rolling Without Liquid-Phase Cooling

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Liming Chang ◽  
Yeau-Ren Jeng

This tech brief presents some basic theory and calculations to help assess the feasibility of surface-film lubricated dry skin pass of metal strips to enhance surface finish after cold-rolling operations. Results are presented of the required rate of heat removal from the rolling apparatus and the maximum rise of roll surface temperature for steel and aluminum strips under various parametric conditions of practical interest. The theory and the calculation tool may be used to perform analyses with other material, geometry, and operating parameters and to assist the design and development of surface-film lubricated dry skin-pass processes.

2019 ◽  
Vol 62 (5) ◽  
pp. 1129-1134 ◽  
Author(s):  
Sarah Wu ◽  
Muhammad Aamir Bashir ◽  
Hsiang Hsieh ◽  
Anilkumar Krosuri ◽  
Armando McDonald

Abstract. In this study, the use of liquid-phase plasma discharge (LPPD) technology to accelerate the transesterification process was explored. An innovative LPPD reactor was first evaluated by varying the conductive opening size on the dielectric plate (0.75, 1.0, and 1.25 mm) coupled with five methanol to oil molar ratios (MOMR; 3, 4, 5, 6, and 7) and two liquid flowrates through the reactor (2.7 and 4.1 mL s-1) at a given catalyst (NaOH) to oil ratio (NaOR) of 0.8% (w/w). The optimal combination of opening size (1.0 mm), MOMR (5), and flowrate (2.7 mL s-1) was then fixed while the NaOR was varied from 0.4% to 1.2% (w/w) in 0.2% increments to determine the best NaOR for the reactor. The results showed that the best combination of the four operating parameters was an opening size of 1.0 mm, MOMR of 5, liquid flowrate of 2.7 mL s-1, and NaOR of 0.6% (w/w), with which a biodiesel conversion rate of 99.5% was obtained at an applied voltage of 1.2 kV. The transesterification reaction time was found to be only 923 ms. The developed LPPD technology has potential to position biodiesel competitively against petroleum diesel. Keywords: Biodiesel conversion, Liquid-phase plasma discharge, Soybean oil, Transesterification


2016 ◽  
Vol 854 ◽  
pp. 93-98
Author(s):  
Kai Köhler ◽  
Norbert Kwiaton ◽  
Martin Bretschneider

Applying a specific roughness on steel sheets, to ensure paintability and sufficient lubrication, is a crucial point for the metal forming processes. Due to the strength of high manganese HSD® steels (X70MnAlSi 15-2.5-2.5), special actions are necessary to obtain the required roughness. At Salzgitter Mannesmann Forschung GmbH skin-pass rolling experiments on high manganese HSD® steels with different PRETEX® textured work-rolls were performed to investigate the influence of roll-surface-texture and skin-pass rolling force on the roughness transfer. The roughness and texture parameters of the steel sheets and roll surfaces were determined using optical confocal microscopy measurements. It is clearly shown that the work-roll surface texture has a major influence on the roughness transfer from work-rolls to steel sheet surfaces.


2015 ◽  
Vol 67 (6) ◽  
pp. 606-611 ◽  
Author(s):  
Marek Burdek

Purpose – This paper aims to analyze changes in the surface topography of the work rolls during skin passing. Cold rolled steel sheets are additionally subject to skin pass rolling to form an appropriate surface topography. This operation should facilitate the process of further metal forming of steel sheets, such as deep drawing, painting, etc. The surface topography of steel sheets is determined by the surface topography of the work rolls as well as the skin pass rolling parameters (rolling speed, elongation, roll force, etc.). Suitable preparation and selection of roll surface topography influences the degree of rolls wear and the surface topography of steel sheets as well. Design/methodology/approach – Two-dimensional (2D) and three-dimensional (3D) roughness measurements of work roll surface before, during and after finishing of skin pass rolling of steel sheets are presented in the paper. The measurements were performed on four sets of work rolls with different surface topography. Findings – The appearance of the surface of rolls obtained from the analysis of 3D roughness, the values of selected parameters of the 3D roughness and relative changes of the roughness parameter Ra/Sa depending on the length of the skin passed steel sheets are presented. Practical implications – The wear of rolls is different depending on work surface topography. Originality/value – The aim of this paper is to analyze changes in the surface topography of the work rolls during skin passing. It was expected that the surface of work rolls with more summits at similar average roughness Ra will change much faster than the surface with fewer summits. For this purpose, preliminary tests were performed in an industrial environment on four pairs of work rolls, including two pairs of rolls that were hard chromium-plated.


2014 ◽  
Vol 4 (4) ◽  
pp. 936-947 ◽  
Author(s):  
Florian T. U. Kohler ◽  
Konstantin Gärtner ◽  
Veit Hager ◽  
Marco Haumann ◽  
Michelle Sternberg ◽  
...  

Ethene dimerization to 2-butenes was catalyzed by Ni-SILP complexes for the first time in a fluidized bed to improve heat removal.


2013 ◽  
Vol 871 ◽  
pp. 152-158
Author(s):  
Wei Hua Sun ◽  
Hong Chun Li ◽  
Ahn Kiet Tieu

The MMS-2B wear machine was used to study abrasion wear of work rolls in cold rolling by simulating emulsion cooling during the cold rolling process. The work roll materials used were 4%Cr, same as those in industrial production. The surface SEM scanning photographs were taken every 30 minutes until the friction experiment finished, and erosive appearance of emulsion on the work roll surface could be seen in the photos. The corrosive wear of the work roll surface is discussed. Findings show that the main causes of stress corrosion and pitting corrosion are uneven microstructure on the work roll surface and a large number of dislocation accumulations, which form microscopic cells. Water in steel rolling emulsion is the main conductive medium of electrochemistry reaction, and this intensifies the corrosive wear.


Sign in / Sign up

Export Citation Format

Share Document