Plugging Agent of Shale Base on Nano Flexible Polymer

2016 ◽  
Vol 835 ◽  
pp. 15-19 ◽  
Author(s):  
Yu Xiu An ◽  
Guan Cheng Jiang ◽  
You Rong Qi ◽  
Qing Ying Ge

In this paper, the nano flexible polymer was synthesized and the plugging property of the polymer in the drilling fluid was studied. The characterization and properties of nano flexible polymer were invested by Particle Size Analyzer and Transmission Electron Microscopy. The nano flexible polymer was synthesized successfully and it was flexible nano material both in water and in drilling fluid. The filtration ability of the polymer was studied by drilling fluid filter press and the results indicated that the filtration property was equal to commonly used fluid loss agent in drilling fluid. The plugging ability was studied by specific surface and porosity physical adsorption instrument (BET). The surface area reduced after treated with the polymer, indicating the nano flexible polymer entered into nanopores of shale formation due to the adsorption in the surface of shale. It was further exhibited that nanopores of shale were plugged by the nano flexible polymer.

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Abo Taleb T. Al-Hameedi ◽  
Husam H. Alkinani ◽  
Mohammed M. Alkhamis ◽  
Shari Dunn-Norman

Abstract Practically, to regulate filtration characteristics of drilling fluid, non-biodegradable materials used commonly have a high cost with side effects on personnel safety and the environment. Hence, eco-friendly additives are needed as an alternative to replace or at least support the commonly used filtration control agents. This experimental investigation examines the possibility of using date tree seeds’ powder (DTSP), as a new eco-friendly fluid loss agent. Under surface and sub-surface conditions (fresh and aged conditions), experiments were executed utilizing low-temperature and low-pressure (LTLP) and high-temperature and high-pressure (HTHP) American Petroleum Institute (API) filter press to comprehend the influence of DTSP on the seepage loss characteristics. The findings were compared with a commonly utilized chemical additive to regulate filtration characteristics of drilling fluid (low viscosity sodium carboxymethyl cellulose (CMC-LV)). Two concentrations of DTSP and CMC-LV were added separately to a reference fluid (RF) to understand the effect of concentration variations on filtration properties. The findings revealed that both DTSP and CMC-LV significantly improved the filtrate and the filter cake when comparing them with the RF under fresh and aged conditions. The findings for fresh conditions also showed that LTLP filtration measurements for CMC-LV additives had almost similar performance as DTSP additives, while HTHP filtration measurements exhibited that the two concentrations of DTSP additives were marginally better than those of CMC-LV additives. For aged conditions, CMC-LV additives were relatively more efficient than DTSP additives for LTLP filtration control experiments. However, DTSP additives were more efficient in improving the filtration characteristics as compared to CMC-LV additives for HTHP filtration control experiments. These results are in aid of shifting the oil and gas industry from using conventional harmful additives to using unconventional eco-friendly additives. This also helps in transforming unwanted food wastes into valuable commercial products, which can revolutionize the domestic and international industries and create new job opportunities, hence minimizing the total cost of drilling fluid and the wastes disposed to the environment.


2012 ◽  
pp. 1-22
Author(s):  
Issham Ismail ◽  
Rosli Illias ◽  
Amy Shareena Abd. Mubin ◽  
Masseera Machitin

The effective cleanup of filter cakes in long, horizontal open-hole completions can maximize an oil well’s productivity. A cleaning solution was formulated which comprised effective microorganisms and a viscoelastic surfactant in order to degrade filter cakes of water-based mud. Generally, the effectiveness of the microorganisms in degrading filter cakes is influenced by temperature and its concentration. To overcome the problem, the viscoelastic surfactant has been used to extend the application of temperature range and increase the viscosity of the cleaning solution. Laboratory studies were conducted to examine the effectiveness of the microorganisms in degrading filter cakes. The apparent viscosity of cleaning solution was measured as a function of shear rate (102.2 s and 1022 s ) and temperature (25 to 80°C). The surface tension of the cleaning solution was measured at room temperature. Static fluid loss tests were performed using the HPHT Filter Press in order to determine the effectiveness of the cleaning solution in degrading filter cake at different temperatures ranging from 100°F to 300°F. Experimental results showed that the cleaning solution could effectively degrade the filter cake. Soaking process was performed until 48 hours and it showed that at temperature 200°F and below, the pure effective microorganisms achieved the highest efficiency of filter cake degradation, i.e. 34.9%. However, at temperature 300°F, cleaning solution that contained effective microorganisms and higher concentration of viscoelastic surfactant was found to perform better. The viscoelastic surfactant succeeded in increasing the viscosity of the cleaning solution, thus enhanced the rate of degradation of filter cakes, i.e. 33.4% at 300°F. The surface tension of the cleaning solution did not change significantly at various concentrations at room temperature.


Author(s):  
Zisis Vryzas ◽  
Vassilios C. Kelessidis ◽  
Lori Nalbandian ◽  
Vassilios Zaspalis

Smart drilling fluids, which can change their properties according to the flow environment, must be carefully designed so that they can handle the difficult challenges of HP/HT drilling successfully. Due to their unique physico-chemical properties, nanoparticles (NP) are considered as very good candidates for the formulation of these smart drilling fluids. This study presents filtration and rheological results of newly developed high-performance water-based drilling fluid systems containing different nanoparticles, commercial (C) titanium oxide (TiO2) and commercial (C) copper oxide (CuO) NP and compares them with results from using custom-made (CM) iron oxide (Fe3O4) NP and commercial (C) iron oxide (Fe3O4) NP, previously reported. Novel nano-based drilling fluids were made of de-ionized water, 7 wt% commercial Na-bentonite (base fluid), and NP were added at 0.5 wt%. The rheological properties of the produced suspensions were measured at temperatures up to 60°C and at atmospheric pressure with a Couette-type viscometer. Filtration characteristics were determined at elevated pressures and temperatures in a HP/HT filter press (500 psi/176°C) using ceramic discs as filter media, of permeability, k = 775 mD. The results of this study showed that the samples containing 0.5 wt% C TiO2 caused a reduction in the fluid loss by 23%, while C CuO NP resulted in 16% reduction, when compared to that of the base fluid, at these HPHT conditions. This should be compared to the 47% and 34% reduction in fluid loss of 0.5% CM Fe3O4 NP and of 0.5% of C Fe3O4 NP, reported previously. Analysis of rheological data revealed shear-thinning behavior for all the tested novel drilling fluids. The samples containing TiO2 and CuO NP exhibited a yield stress less than that of the base fluid, compared to the increased yield stress observed for the C and CM Fe3O4 NP. This behavior can be attributed to the fact that TiO2 and CuO NP may also act as deflocculants and prevent the gelation of bentonite suspensions. This study shows that commercial nanoparticles of TiO2 and CuO do not perform as well as the Fe3O4 NP on filtration but provide drilling fluids with lower yield stresses, thus they could be considered as alternatives to Fe3O4 in situations where the rheological properties are critical.


2020 ◽  
Vol 10 (8) ◽  
pp. 3389-3397 ◽  
Author(s):  
Nayem Ahmed ◽  
Md. Saiful Alam ◽  
M. A. Salam

Abstract Loss of drilling fluid commonly known as mud loss is considered as one of the critical issues during the drilling operation as it can cause severe formation damage. To minimize fluid loss, researchers introduced numerous additives but did not get the expected result. Recently, the use of nanoparticles (NPs) in drilling fluid gives a new hope to control the fluid loss. A basic KCl–Glycol–PHPA polymer-based mud is made, and six different concentrations of 0.1, 0.5, 1.0, 1.5, 2.0, 3.0 wt% iron (III) oxide or Hematite (Fe2O3) NPs are mixed with the basic mud. The experimental observations reveal that fluid loss of basic mud is 5.9 ml after 30 min and prepared nano-based drilling mud results in a less fluid loss at all concentrations. Nanoparticles with a concentration of 0.5 wt% result in a 5.1 ml fluid loss at the API LTLP filter press test. On the other hand, nanoparticles with a concentration of 3.0 wt% enhance the plastic viscosity, yield point, and 10 s gel strength by 15.0, 3.0, and 12.5%, respectively. The optimum concentration of hematite NPs is found to be 0.5 wt% which reduces the API LPLT filtrate volume and filter cake thickness by 13.6 and 40%, respectively, as well as an improvement of plastic viscosity by 10%.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Oscar Contreras ◽  
Mortadha Alsaba ◽  
Geir Hareland ◽  
Maen Husein ◽  
Runar Nygaard

This paper presents a comprehensive experimental evaluation to investigate the effects of adding iron-based and calcium-based nanoparticles (NPs) to nonaqueous drilling fluids (NAFs) as a fluid loss additive and for wellbore strengthening applications in permeable formations. API standard high-pressure-high-temperature (HPHT) filter press in conjunction with ceramic disks is used to quantify fluid loss reduction. Hydraulic fracturing experiments are carried out to measure fracturing and re-opening pressures. A significant enhancement in both filtration and strengthening was achieved by means of in situ prepared NPs. Our results demonstrate that filtration reduction is essential for successful wellbore strengthening; however, excessive reduction could affect the strengthening negatively.


2021 ◽  
Vol 11 (1) ◽  
pp. 137-145
Author(s):  
Hani Ali Al Khalaf ◽  
Zeeshan Ahmad ◽  
Gabriella Kovácsné Federer

This study aims to evaluate the effect of wheat flour as a natural and environmentally friendly material on the properties of water-based mud. Recently, many experiments have been conducted with various additives to improve the properties of drilling fluids. The effect of using wheat flour as a new additive to drilling fluid was studied to improve rheological and filtration properties. In the laboratory several samples of water-based mud were prepared, different concentrations of wheat flour from 1 wt% to 7 wt% were added to the mud and tested by using a Fann 35 viscometer, 140 Fann Mud balance, and an API LT-LP filter press. The results showed that adding 7 wt% of wheat flour was the optimal concentration. It was found that the apparent viscosity and yield point increased by 50% and 35%, respectively, when 7 wt% of wheat flour was added to the water-based drilling fluid. Likewise, the fluid loss rate was reduced by 25% when using the same concentration of wheat flour.


Author(s):  
Zisis Vryzas ◽  
Omar Mahmoud ◽  
Hisham Nasr-El-Din ◽  
Vassilis Zaspalis ◽  
Vassilios C. Kelessidis

A successful drilling operation requires an effective drilling fluid system. Due to the variety of downhole conditions across the globe, the fluid system should be designed to meet complex challenges such as High-Pressure/High-Temperature (HPHT) environments, while promoting better productivity with a minimum interference for completion operations. This study aims to improve the rheological and fluid loss properties of water-bentonite suspensions by using both commercial (C-NP) and custom-made (CM-NP) iron oxide (Fe3O4) nanoparticles (NP) as drilling fluid additives. Superparamagnetic Fe3O4 NP were synthesized by the co-precipitation method. Both types of nanoparticles were characterized by a High Resolution Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). Base fluid (BF), made of deionized water and bentonite at 7wt%, was prepared according to American Petroleum Institute (API) procedures and nanoparticles were added at 0.5wt%. A Couette-type viscometer was used to analyze the rheological characteristics of these fluids at different shear rates and various temperatures (up to 158°F). The rheological parameters were obtained from analysis of viscometric data using non-linear regression. The API Low-Pressure/Low-Temperature (LPLT) and HPHT fluid filtrate volumes were measured, using a standard API LPLT static filter press (100 psi, 77°F) and an API HPHT filter press (300 psi, 250°F). Observation of the porous matrix morphology of the produced filter cakes was done with Scanning Electron Microscope (SEM). TEM showed that the mean diameter of the CM-NP was 7–8 nm, with measured surface areas between 100–250 m2/g. The C-NP had an average diameter of <50 nm, as per manufacturer specifications. The XRD of the CM-NP revealed peaks corresponding to pure crystallites of magnetite (Fe3O4) with no impurities. Rheological analysis showed very good fitting by the Herschel-Bulkley model with coefficient of determination (R2) greater than 0.99. Rheological properties of all samples were affected by higher temperatures, with increase in yield stress, decrease in flow consistency index (K) and slight increase in flow behavior index (n). Fluid filtration results indicated a decrease in the LPLT fluid loss and an increase in the filter cake thickness compared to the BF upon addition of higher concentrations of C-NP, because of a decrease in filter cake permeability. At HPHT conditions, samples with 0.5wt% C-NP had a smaller fluid loss by 34.3%, compared to 11.9% at LPLT conditions. CM-NP exhibited even higher reduction in the fluid loss at HPHT conditions of 40%. Such drilling fluids can solve difficult drilling problems and aid in achieving the reservoir’s highest potential by eliminating the use of aggressive, potentially damaging chemicals. Exploitation of the synergistic interaction of the utilized components can produce a water-based system with excellent fluid loss characteristics while maintaining optimal rheological properties.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Nor Fatihah Abdul Majid ◽  
Issham Ismail ◽  
Mohd Fauzi Hamid

Lost circulation is one of the drilling operational problems. It refers to the total or partial loss of drilling fluid into highly permeable zones or natural or induced fractures. This problem is likely to occur when the hydrostatic head pressure of drilling fluid in the hole exceeds the formation pressure. Today, managing lost circulation remains a significant challenge to oilwell drilling operations because it may contribute to high non-productive time. It is imperative to note that the overbalance pressure situation also can cause the invasion of mud filtrate into production zones which will result in formation damage. To address these problems, an experimental investigation has been done on durian rind as an alternative fluid loss and lost circulation materials in water-based mud. Durian rind was selected as a mud loss control material because it contains close to 20% pectin which may complement the formation of high quality mat-like bridges across openings of the formation. The test involved the use of standard mud testing equipment and a lost circulation test cell. Durian rind powder was prepared by cleaning and cutting the durian rind into small pieces of 1 to 2 cm, and then dried them in an oven at 60°C for 48 hours before grinding into five different sizes from coarse to ultra-fine while Hydro-plug, the commercial lost circulation material was supplied by Scomi Energy. The fluid loss test was conducted using a standard low pressure filter press while the bridging test was carried out at 100 psi of pressure difference and ambient temperature using a lost circulation cell. Fine durian in the water-based mud gave the best fluid loss control compared to coarse durian rind, fine and coarse Hydro-plug. The experimental results also showed that at 15 lb/bbl (42.8 kg/m3) optimum concentration, coarse and intermediate durian rind have outperformed Hydro-plug by showing an excellent control of mud losses in 1 and 2 mm simulated fractures.


1969 ◽  
Vol 9 (04) ◽  
pp. 403-411 ◽  
Author(s):  
B.K. Sinha ◽  
Harvey T. Kennedy

Abstract Recommendations are made for obtaining consistent and reproducible test data on drilling fluids having identical composition. Previously, such a procedure has been difficult to accomplish even when the fluids were mixed in similar equipment. A survey of work in this area indicates that previous methods have been unsatisfactory because previous methods have been unsatisfactory because (1) the muds are extremely sensitive to the duration and violence of agitation during a normal mixing routine, and (2) gelling of the muds occurs before the properties can reach constant values. This gelling is caused by water evaporation resulting from the increase in temperature associated with the agitation. The work shows that these problems largely can be overcome by (1) agitating the constituents of the drilling fluid more vigorously, (2) maintaining a fairly constant temperature, and(3) Protecting the fluid from evaporation. When these steps are followed, the fluid properties approach asymptotic values that do not change by prolonged or accelerated agitation or by aging for a month. The time required to reach asymptotic values or a stabilized state is from 2 to 6 hours and is a function of the mud composition. Introduction Preparation of drilling fluids in the laboratory to determine their suitability to meet specific drilling requirements or to serve as a base fluid to evaluate the effectiveness of thinners, dispersants or other additives normally begins with combining measured quantities of the constituents and stirring them for a short time in a low-speed mixer. This is done to obtain a uniform mixture and to hydrate clays. Then the fluid is further agitated in a higher-speed device (Hamilton Beach mixer or Waring blender) to disperse more thoroughly and clay particles The biggest obstacle in the laboratory investigation of drilling fluids has been the lack of a method of producing a mixture by which reproducible results of the measured properties could be obtained. Numerous investigators have encountered this difficulty. Prior to 1929, density was the only property of mud that customarily was measured. The use of Wyoming bentonite on a large scale after 1929 was mainly responsible for the development of more elaborate testing procedures and for the application of the principles of colloid chemistry to the drilling fluids. Ambrose and Loomis in 1931 were among the first to recognize the plastic flow characteristics of drilling fluids, although Bingham in 1916 had observed The same phenomenon with dilute clay suspensions. Marsh introduced the Marsh funnel for field testing in 1931. By this time, non-Newtonian characteristics of drilling fluids were established. The Stormer and MacMichael viscometers were used to study the rheological properties of the fluids. In the 1930's and early 1940's, the work conducted by several investigators contributed toward a better understanding of drilling fluids. In the mid 1930's, fluid-loss and the associated mud-cake-forming properties of drilling fluids were recognized as important to the behavior of these fluids. The other properties of drilling fluids, including gel strength, pH, and sand content soon were recognized. In 1937, API published its first recommended procedure for test methods. Since that time, these procedures have been revised periodically. The latest edition, RP-13B, was published in 1961 However, in spite of the recognized need for a method of mixing that provides drilling fluids with stabilized properties, no such method previously has been described. SPEJ P. 403


Sign in / Sign up

Export Citation Format

Share Document