Performance Improvement of a Domestic Liquefied Petroleum Gas Cook Stove Using an Extended Spill-Tray and an Annular Metal Insert

Author(s):  
Mithun Das ◽  
Ranjan Ganguly ◽  
Amitava Datta ◽  
Meenam M. Verma ◽  
Ashis K. Bera

Abstract Liquefied petroleum gas (LPG) is widely used as a cooking fuel as it has higher energy content and produces lower emissions compared to other traditional fuels. Due to massive demand for LPG, aside from its limited reserve, performance improvement of the LPG cook-stoves is essential. In the present work, the thermal efficiency of a traditional cook stove has been studied both experimentally and numerically for LPG fuel. Based on the knowledge from the computational model concerning flow field and species transport parameters, the conventional cook-stove design has been modified for improving the efficiency. In the modified design of the stove, attachment of an annular metal plate insert and introduction of an extended spill-tray to close the gap around the burner are considered. The modifications result in favourable guidance of the flow of secondary air and hot product gases of combustion to ensure better heat transfer rate to the loading vessel. The thermal efficiency of the modified cook-stove is around 73.6%, which is about 4.7 percentage point improvement from that of an identical stove without the insert and extended spill-try.

Author(s):  
Vijayakumar Rajendran ◽  
Harichandran Ramasubbu ◽  
Karthick Alagar ◽  
Vignesh Kumar Ramalingam

An experimental study has been carried out to enhance a solar air heater’s performance by integrating artificial roughness through baffles on the absorber plate. In this paper, the thermal and energy matrices analysis of a Solar Air Heater (SAH) roughened with V up perforated baffles have been investigated. The effect of various mass flow rates on the SAH was analyzed with and without baffles. Experimental outputs like outlet air temperature, useful energy (heat) gain and thermal efficiency were evaluated to confirm the performance improvement. The baffled absorber plate SAH was found to give the maximum thermal efficiency and useful energy gain of 89.3% and 1321.37 W at a mass flow rate of 0.0346 kg/s, 13% and 12% higher than SAH without baffle. This result showed that the V up-shaped ribs in flow arrangement provide better thermal performance than smooth plate SAH for the parameter investigated. Energy matrices analysis and carbon dioxide mitigation of the SAH system were also analyzed.


2018 ◽  
Vol 136 (4) ◽  
pp. 1847-1860 ◽  
Author(s):  
Howard O. Njoku ◽  
Ikenna N. Agbo ◽  
Izuchukwu P. Agwuna ◽  
Darlington I. Egeonu ◽  
Felix U. Asuquo ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3655 ◽  
Author(s):  
Iván D. Palacio-Caro ◽  
Pedro N. Alvarado-Torres ◽  
Luis F. Cardona-Sepúlveda

Heat treatments, such as steel tempering, are temperature-controlled processes. It allows ferrous steel to stabilize its structure after the heat treatment and quenching stages. The tempering temperature also determines the hardness of the steel, preferably to its optimum working strength. In a tempering furnace, a heat-resistant fan is commonly employed to generate moderate gas circulation to obtain adequate temperature homogeneity and heat transfer. Nevertheless, there is a tradeoff because the overall thermal efficiency is expected to reduce because of the high rotating speed of the fan. Therefore, this study numerically investigates the thermal efficiency changes of an electric tempering furnace due to changes in the rotating speed of the fan and the effects on temperature homogeneity and the heat transfer rate to the load. Heat losses through the walls were calculated from the external temperature measurement of the furnace. Four different speeds were simulated: 720, 990, 1350, and 1800 rpm. Thermal homogeneity was improved at higher rotating speeds; this is because the recirculation zone caused by the fan improved the flow mixing and the heat transfer. However, it was found that the thermal efficiency of the tempering furnace decreased as the rotating speed values increased. Therefore, these characteristics should be modulated to obtain a profit when controlling the rotating speed. For example, although thermal efficiency decreases by 20% when the rotating speed is doubled, the heat transfer rate to load is increased by up to 50%, which can be beneficial in decreasing the process of tempering times.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3528
Author(s):  
Jakub Lasocki ◽  
Artur Kopczyński ◽  
Paweł Krawczyk ◽  
Paweł Roszczyk

A range extender is an auxiliary power unit, usually consisting of an internal combustion engine and an electric generator, which is used to charge a battery of an electric vehicle in order to increase its range. This paper considers a range extender supplied with liquefied petroleum gas (LPG). The aim is to provide detailed data on thermal efficiency, brake specific fuel consumption (BSFC), and unit emission of carbon dioxide (CO2) in a broad spectrum of range extender operating conditions defined by rotational speed and torque. The experimental investigation has been conducted using a laboratory test stand equipped with an energy dissipation system of adjustable resistance. Measurement results, including fuel flow rate, were processed using custom algorithm for generating maps, i.e., two-dimensional dependencies of the considered parameters on the rotational speed and torque. The maps obtained for LPG supply were compared with those for gasoline supply. The results demonstrated feasibility of LPG-supplied range extender. Its BSFC and thermal efficiency were at a comparable level to those obtained for gasoline supply, but with less CO2 emission. The empirical data collected has been adopted in the simulation of extended-range electric vehicle in a driving cycle, showing the potential of utilizing the results of this study.


2013 ◽  
Vol 864-867 ◽  
pp. 1798-1803 ◽  
Author(s):  
Kun Lu ◽  
Da Wei Chen ◽  
Zhuang Li

For gypsum rain phenomenon in limestone-gypsum wet desulfurization system. This article made programme that has used unit existing equipment allowance. Extracted hot secondary air to heat purified flue gas to eliminate "gypsum rain". This programme is implemented which makes temperature of purified flue gas rising to 70 °C. That almost eliminate "gypsum rain" phenomenon. While temperature of boiler exhaust gas declined, and temperature of hot air reduced, and boiler thermal efficiency declined, unit of power coal consumption rosed. Comparing to other programmes, this programme has a larger advantage in technology, economic, and security aspects.


1950 ◽  
Vol 162 (1) ◽  
pp. 20-26
Author(s):  
T. F. Hurley ◽  
W. J. Sparkes

Following the development of the Fuel Research Station “smoke eliminator” fire doors for hand-fired, natural-draught Lancashire boilers, a series of trials was carried out to obtain figures for their performance under a variety of conditions. Most of the trials were made with one or other of two sizes (”singles” and “smalls”) of a Northumberland coal, which was chosen because of its tendency to make heavy smoke; similar results were obtained with both sizes. The figures obtained during these trials, together with those of a few supplementary trials, are used to illustrate the effects of certain variables upon the performance of a boiler of that type. The information presented includes (1) the correlation of smoke intensity with the composition of the flue gases and with thermal efficiency, (2) the use of secondary air and suitable methods of firing to reduce the heat losses caused by incomplete combustion, (3) the effect of too little and of too much excess air upon efficiency, and (4) the effect of load upon efficiency. With the special fire doors, the admission of secondary air over the fire could easily be controlled and a simple method of firing could be employed. In consequence, the efficiency of combustion was maintained at a consistently high level without calling for exceptional skill or effort on the part of the fireman. Maximum efficiency was obtained when the quantity of secondary air was just sufficient to eliminate smoke: decreasing the percentage of excess air by a small amount below the optimum had as bad an effect upon efficiency as a considerable increase. Varying the load also affected efficiency, the maximum being reached well below rated load, but the variation in efficiency between 40 and 100 per cent of full load was comparatively small.


Author(s):  
Mithun Das ◽  
Ranjan Ganguly ◽  
Amitava Datta ◽  
Meenam M. Verma ◽  
Ashis K. Bera

Abstract Liquefied petroleum gas (LPG) is widely used in domestic cookstoves as it is a clean and high energy content fuel in comparison with other traditional cooking fuels. With the increasing demand of LPG, study and improvement of cookstove performance have become an important subject. In the present work, a numerical study of the flow and thermal fields for a domestic cookstove burner has been investigated and the performance of the stove is analyzed at different parametric conditions, like the equivalence ratio of the primary fuel–air mixture, fuel flow rate, thermal load height, and loading vessel size. The maximum thermal efficiency has been found for an equivalence ratio of 1.4 for the LPG–air mixture and at load height of 20 mm. The heat flux distribution at the bottom of the vessel is found to be bimodal with the higher peak occurring closer to the center of the vessel. The thermal efficiency of the stove increases with the rise in the fuel flow rate, and it decreases with reducing cooking vessel diameter. As the vessel diameter increases, the fraction of the total heat supplied through the vessel bottom increases. The radiative component of the heat flux is found to be much smaller compared to the convective component.


Author(s):  
Liam Cassidy ◽  
Nordica MacCarty

Abstract The use of solid biomass as a primary energy source for cooking is common to nearly half of the world’s population. Household air pollution as a byproduct of biomass combustion creates powerful negative health impacts related to air quality and a strong influence on our global radiative balance. Despite efforts to improve biomass-fueled cooking technology, many current designs still fail to meet WHO guidelines for air quality and consume excessive fuel. One promising method to improve in both of these areas is through introduction of forced primary or secondary air to the combustion process to increase turbulence, mixing, and velocity. Incorporating computational fluid dynamics to the design process for this forced draft air flow can provide insights into the complex and interconnected thermophysical relationships which, otherwise, would require extensive experimentation. The objective of this work is to provide a preliminary computational fluid dynamics study of a secondary air forced draft biomass cookstove. Thermal efficiency and emissions concentrations are investigated relative to various combinations of secondary air flow rates and injection angles. The results from the case study suggest that thermal efficiency of the cookstove is a function of secondary air injection angle, with optimal angle being a function of the specific air-fuel ratio. Additionally, a design trade-off is evident when comparing the pollutant concentration data and thermal efficiency data. Lastly, analysis of the computational results suggests that large pressure gradients about secondary air vortices in the combustion chamber lead to improved thermal efficiency and more complete combustion. The continued development of this work into an open-source computational fluid dynamics tool is underway.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5257
Author(s):  
Yanfei Yao ◽  
Songxiong Ding ◽  
Yanxin Chen

This paper proposes that the scope of research should be extended to the whole clinker calcination system from its single device or specific process (i.e., its functional subunits) as conventionally conducted. Mass/heat flow and effective heat were first analyzed to obtain the thermal efficiencies of its subunits (φi); a thermal efficiency model of the whole system φQY was thus established by correlating the relationship between φi and φQY. The thermal efficiency model of the whole system showed that φi had a positive linear correlation with φQY; it was found that the thermal efficiency of the decomposition and clinker calcination unit (φDC) had the greatest weight on φQY, where a 1% increase in φDC led to a 1.73% increase in φQY—improving φDC was shown to be the most effective way to improve φQY. In this paper, the developed thermal efficiency model was applied to one 5000 MT/D production line. It was found that its φQY was only 61.70%—about 2.35% lower than a representative line; such decrease was caused by its low φDC and φP which, as disclosed by model, were derived from the low decomposition rate of calcium carbonate in preheated meal put into a calciner and the high excess air coefficient of secondary air. Controlled parameter optimization of this 5000 MT/D production line was then carried out. As a result, the φDC and φP of the production line were increased from 30.03% and 64.61% to 30.69% and 65.69%, respectively; the φQY increased from 61.70% to 62.55%; the clinker output of the production line increased from 5799 MT/D to 5968 MT/D; the heat consumption of clinker was reduced from 3286.98 kJ/kg·cl to 3252.41 kJ/kg·cl.


Author(s):  
Gyeung Ho Choi ◽  
Seong Keun Shin ◽  
Seok Choun Bae ◽  
Yong Jong Chung ◽  
Sung Bin Han

This study aims to provide basic technical information for research regarding starting performance improvement by using a 2.656 cm3 V6 liquid propane injection engine to study the effects of varying the liquefied petroleum gas (LPG) leakage on starting performance and to analyse the effects of such leakage on emission characteristics. To determine the LPG injection amount that corresponds to the desired LPG leakage, 1–30 l was injected to find the critical point and, since the injected fuel was detected at the intake starting from 5.5 l, starting performance comparisons of engine speed and exhaust gases were made at 0 l, 1 l, 2 l, 3 l, 4 l, 5 l, and 6 l by measuring the desired value five times and taking the average. Also, to study the effects of a small leak, the starting performance was tested while injecting 0 l, 0.2 l, 0.4 l, 0.6 l, 0.8 l, and 1 l. The major conclusions of this work are as follows: The results of determining the critical point of starting delay for LPG leakages of 1–30 l show that the critical point is 21 l and 14 cycles. For LPG leakages of 1–6 l, the starting time and unburned hydrocarbon (HC) increases with increasing LPG leakage. At LPG leakage of 0.2 l, the starting time is much faster at 1 cycle, but unburned HC increases with increasing LPG leakage.


Sign in / Sign up

Export Citation Format

Share Document