Rotor-Alone Tones in the Outflow Noise of a Centrifugal Compressor

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Armin Faßbender ◽  
Martin Enneking ◽  
Peter Jeschke

Abstract This article investigates the generation of rotor-alone tones and their contribution to the outflow noise of a transonic centrifugal compressor stage with vaneless diffuser and volute by means of unsteady full-annulus computational fluid dynamics (CFD) simulations. The aerodynamic field and the generation and propagation of sound were simulated simultaneously using the unsteady Reynolds-averaged Navier–Stokes (URANS) approach of the solver trace and a numerical grid consisting of 170 M cells. To assess the accuracy of the predicted fluctuations, the investigation compares the simulated diffuser flow field to measured flow angles and pressure fluctuations obtained from experiments conducted on a large-scale test rig. The analysis explains the different sound generation mechanisms responsible for tonal components in the acoustic spectrum at the compressor outlet based on the Fourier decomposition of the pressure fluctuations in diffuser and volute. Furthermore, this article analyzes the modal structure of the simulated sound field at the volute outlet by means of a radial mode analysis and discusses the influence of changing operating conditions on the sound power emitted. The analyses reveal that supersonic flow phenomena occurring at choked operating conditions cause a significant increase in noise emissions. Furthermore, the investigation shows that the sound field at the volute outlet is dominated by few low-order modes, a fact that justifies the analysis using methods based on the compressed sensing in future experimental investigations.

Author(s):  
Armin Faßbender ◽  
Martin Enneking ◽  
Peter Jeschke

Abstract This paper investigates the generation of rotor-alone tones and their contribution to the outflow noise in a transonic centrifugal compressor stage with vaneless diffuser and volute by means of unsteady full-annulus CFD-simulations. The aerodynamic field, as well as the generation and propagation of sound, were simulated simultaneously using the URANS-approach of the solver TRACE and a numerical grid consisting of 170M cells. To assess the accuracy of the predicted fluctuations, the investigation compares the simulated diffuser flow field to measured flow angles and pressure fluctuations obtained from experiments conducted on a large-scale test rig. The analysis explains the different sound generation mechanisms responsible for tonal components in the acoustic spectrum at the compressor outlet, based on the Fourier decomposition of the pressure fluctuations in diffuser and volute. Further, the paper analyzes the modal structure of the simulated sound field at the volute outlet by means of a radial mode analysis and discusses the influence of changing operating conditions on the sound power emitted. The analyses reveal that supersonic flow phenomena occurring at choked operating conditions cause a significant increase in noise emissions. Furthermore, the investigation shows that the sound field at the volute outlet is dominated by few low-order modes, a fact that justifies analysis using methods based on Compressed Sensing in future experimental investigations.


Author(s):  
N Bulot ◽  
I Trébinjac ◽  
X Ottavy ◽  
P Kulisa ◽  
G Halter ◽  
...  

Numerical and experimental investigations were conducted in a transonic centrifugal compressor stage composed of a backswept splittered unshrouded impeller and a vaned diffuser. The present article focuses on the results obtained within the impeller, at an operating condition close to the surge of the compressor. The experimental results were obtained from a laser Doppler anemometry investigation. Unsteady numerical simulations of the compressor stage were performed using a three-dimensional Reynolds-averaged Navier—Stokes code with a phase-lagged technique, at both peak efficiency and close to surge operating conditions. A good agreement between the experiments and simulations were obtained, which justifies the use of the computational fluid dynamics results for the comparison of the flow field at both operating conditions (peak efficiency and near surge). Even if the change in flow field within the impeller from peak efficiency to near surge looked to be gradual, an overall rotation of the whole flow in the blade passages led to a non-homogeneous flow at the impeller exit in terms of angle and velocity level. Therefore, the vaned diffuser has to tolerate upstream flows, which are all the more distorted as the operating point moves towards surge.


2018 ◽  
Vol 2 ◽  
pp. I1RSJ3 ◽  
Author(s):  
Moritz Mosdzien ◽  
Martin Enneking ◽  
Alexander Hehn ◽  
Daniel Grates ◽  
Peter Jeschke

Due to the increasing demand for higher efficiencies of centrifugal compressors, numerical optimization methods are becoming more and more relevant in the design process. To identify the beneficial features of a numerical optimized compressor design, this paper analyses the influence of arbitrary blade surfaces on the loss generation in a transonic centrifugal compressor. The paper therefore focuses on an analysis of the secondary flow development within the impeller blade passages. To do this, steady simulations were performed on both a baseline and an optimized blade design. Two distinct design features of the optimized compressor stage were identified, which lead to a more homogenous impeller exit flow and thus to an increase in total-to-static efficiency of 1.76% points: the positive lean in the near-tip region and the positive blade curvature in the rear part of the optimized impeller. Furthermore, through extensive experimental investigations conducted on a large scale test rig it has been possible to prove the particular impeller outflow characteristics of the baseline compressor stage.


2011 ◽  
Vol 681 ◽  
pp. 261-292 ◽  
Author(s):  
M. KEARNEY-FISCHER ◽  
J.-H. KIM ◽  
M. SAMIMY

Mach wave radiation is one of the better understood sources of jet noise. However, the exact conditions of its onset are difficult to determine and the literature to date typically explores Mach wave radiation well above its onset conditions. In order to determine the conditions for the onset of Mach wave radiation and to explore its behaviour during onset and beyond, three ideally expanded jets with Mach numbers Mj = 0.9, 1.3 and 1.65 and stagnation temperature ratios ranging over To/T∞ = 1.0–2.5 (acoustic Mach number 0.83–2.10) were used. Data are collected using a far-field microphone array, schlieren imaging and streamwise two-component particle image velocimetry. Using arc filament plasma actuators to force the jet provides an unprecedented tool for detailed examination of Mach wave radiation. The response of the jet to various forcing parameters (combinations of one azimuthal mode m = 0, 1 and 3 and one Strouhal number StDF = 0.09–3.0) is explored. Phase-averaged schlieren images clearly show the onset and evolution of Mach wave radiation in response to both changes in the jet operating conditions and forcing parameters. It is observed that Mach wave radiation is initiated as a coalescing of the near-field hydrodynamic pressure fluctuations in the immediate vicinity of the large-scale structures. As the jet exit velocity increases, the hydrodynamic pressure fluctuations coalesce, first into a curved wavefront, then flatten into the conical wavefronts commonly associated with Mach wave radiation. The results show that the largest and most coherent structures (e.g. forcing with m = 0 and StDF ~ 0.3) produce the strongest Mach wave radiation. Conversely, Mach wave radiation is weakest when the structures are the least coherent (e.g. forcing with m = 3 and StDF > 1.5).


Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M. Allport ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson

Ported shroud casing treatment is widely used to delay the onset of surge and thereby enhancing the aerodynamic stability of a centrifugal compressor by recirculating the low momentum fluid in the blade passage. Performance losses associated with the use of recirculation casing treatment are well established in the literature and this is an area of active research. The other, less researched aspect of the casing treatment is its impact on the acoustics of the compressor. This work investigates the impact of ported shroud casing treatment on the acoustic characteristics of the compressor. The flow in two compressor configurations viz. with and without casing treatment operating at the design operating conditions of an iso-speed line are numerically modelled and validated with experimental data from gas stand measurements. The pressure fluctuations calculated as the flow solution are used to compute the spectral signatures at multiple locations to investigate the acoustic phenomenon associated with each configuration. Propagation of the frequency content through the ducts has been estimated with the aid of method of characteristics to enhance the content coming from the compressor. Expected tonal aerodynamic noise sources such as monopole (buzz-saw tones) and dipole (Blade Pass Frequency) are clearly identified in the acoustic spectra of the two configurations. The comparison of two configurations shows higher overall levels and tonal content in the case of a compressor with ported shroud operating at design conditions due to the presence of ‘mid-tones’.


Author(s):  
Ilhan Bayraktar ◽  
Drew Landman ◽  
Tuba Bayraktar

Reliable computer solutions to external aerodynamic flow fields on road vehicles are extremely desirable to road vehicle designers. In a previous publication a study was performed to validate a Reynolds-averaged unsteady Navier-stokes solution for the aerodynamic characterization of a large-scale bluff body. In the present study, the external aerodynamics of this body as a function of ground clearance are explored. Experimental force measurements are obtained in a full-scale wind tunnel using an Ahmed body model and test conditions representative of full-scale operating conditions. A Reynolds averaged Navier-Stokes solver is employed for computational simulation of the external flowfield at the same conditions. Experimental and computational force coefficients versus vehicle ground clearance are presented for fixed ground, moving ground, and suction slot road simulations. Experimental results using boundary layer suction are compared to computational results with a moving ground plane in order to better understand the effect of a road simulation method.


Author(s):  
Rémy Fransen ◽  
Nicolas Gourdain ◽  
Laurent Y. M. Gicquel

This work focuses on numerical simulations of flows in blade internal cooling system. Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) approaches are compared in a typical blade cooling related problem. The case is a straight rib-roughened channel with high blockage ratio, computed and compared for both a periodic and full spatial domains. The configuration was measured at the Von Karman Institute (VKI) using Particle Image Velocimetry (PIV) in near gas turbine operating conditions. Results show that RANS models used fail to predict the full evolution of the flow within the channels where massive separation and large scale unsteady features are evidenced. In contrast LES succeeds in reproducing these complex flow motions and both mean and fluctuating components are clearly improved in the channels and in the near wall region. Periodic computations are gauged against the spatial computational domain and results on the heat transfer problem are addressed.


Author(s):  
Uwe Zachau ◽  
Reinhard Niehuis ◽  
Herwart Hoenen ◽  
David C. Wisler

On a centrifugal compressor test facility various experimental investigations have been carried out contributing a valuable gain in knowledge on the fundamental flow physics within passage type diffusers. An extensive measurement series using various steady, unsteady and laser optical measurement techniques has been performed to detect the unsteady, highly three dimensional diffuser flow under various realistic operating conditions. Zachau et al. [1] presented the test facility and the results gathered under nominal conditions. As a follow-up the results of investigated parameter variations are now presented, covering bleed variations, impeller tip clearance and impeller-diffuser misalignment studies. The data is compared to the benchmark created from the nominal baseline data sets and evaluated with respect to the compressor stage performance. Zachau et al. [1] found that under nominal conditions the flow in the pipe diffuser separates on the pressure side in the first half of the pipe. In the last 30% of the pipe hardly any deceleration of the flow takes place. From this, special attention is given to the investigated parameter variations regarding a first proposal for a diffuser design change, which consists in shortening the diffuser. The results for each parameter variation are evaluated in detail in direct comparison to the nominal baseline configuration underlining the conclusion made earlier that the diffuser flow always separates on the pressure side with negligible deceleration in the last third of the diffusing pipe.


Author(s):  
Elisabetta Belardini ◽  
Dante Tommaso Rubino ◽  
Libero Tapinassi ◽  
Marco Pelella

Performance curves in 2nd quadrant are important to size protection equipment of both compressor and surrounding system. With reverse flow also the level and frequency of pressure fluctuations in different operating points is important to estimate blade loading and possible presence of excitation frequencies. The capability of performance predictive tools (either CFD or correlations based methods) as also mechanical design criteria are generally poor in 2nd quadrant and suffer for the scarcity and inadequacy of validation data. The second quadrant branch for a centrifugal compressor has been experimentally tested after the standard characterization in direct flow. A test arrangement has been designed, with a booster compressor connected in parallel with the tested stage, forcing the flow to be stable in reverse flow. The compressor characteristics have been measured with static and dynamic instrumentation. Present experience showed that when machine is operated in the stable reverse flow condition, pressure fluctuations and vibration are higher with respect to the values measured in nominal direct flow operating conditions. The increase is in the order of 10–20% of the corresponding value in direct flow. The same can be stated also for axial thrust and secondary flows that increase when the gas flows in reverse direction but the increase is in the order of 10–15%. Thus in 2nd quadrant, compressor equipment (in particular impeller blades) and all other system devices experience unusual loading levels but the additional loads are not big enough to cause relevant damaging if sustained for limited time periods. This result may allow simplifying the design of system layout: in particular, if during ESD no surging cycle is expected but only a reverse flow sustained steadily by the system (which is actually the most typical experience), the additional ASV’s, such as hot or cold gas by-pass valves, may be reduced in size or eventually removed optimizing the plant BOP.


Author(s):  
Bernhard Semlitsch ◽  
V. Jyothishkumar ◽  
Mihai Mihaescu ◽  
Laszlo Fuchs ◽  
Ephraim J. Gutmark

The flow through a ported shroud compressor of an automobile turbocharger is simulated using Large Eddy Simulations. Generally, the compressor is subjected to work within certain range of the mass-flow conditions. Reduction of the operation mass-flow below a certain minimum limit, leads to breakdown of the complete compressor operability. Flow reversal occurs in the compressor wheel, which results in amplification of velocity and pressure fluctuations. Consequentially, large vibratory stresses are induced into the blades under off-design condition and thereby affect the blade life duration detrimentally. The aim of this study is to understand the generation of flow-structures during extreme operable conditions (surge condition) in a centrifugal compressor. The investigation of the appearing flow-structures with the surge phenomenon is essential to explore new methods that improve the stability or the flow-operating regime of the compressor. The complete 360° compressor geometry is utilized in the computational simulations. Further, the transient sliding mesh technique is applied to account for an accurate prediction of the mesh motion and thus, the geometrical interaction between the impeller and the stationary diffuser. The numerical results are compared with available experimental measurements obtained under the same operating conditions (design and near-surge condition). The rotating stall instability is predicted using FFT data analysis. Furthermore, the numerical study captures the low frequency peak characterizing the global instability of the surge condition.


Sign in / Sign up

Export Citation Format

Share Document