scholarly journals Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging

Author(s):  
Ronald Warzoha ◽  
Adam/A Wilson ◽  
Brian Donovan ◽  
Nazli Donmezer ◽  
Ashutosh Giri ◽  
...  

Abstract This review introduces relevant nanoscale thermal transport processes that impact thermal abatement in power electronics applications. Specifically, we highlight the importance of nanoscale thermal transport mechanisms at each layer in material hierarchies that make up modern electronic devices. This includes those mechanisms that impact thermal transport through: (1) substrates, (2) interfaces and 2-D materials and (3) heat spreading materials. For each material layer, we provide examples of recent works that (1) demonstrate improvements in thermal performance and/or (2) improve our understanding of the relevance of nanoscale thermal transport across material junctions. We end our discussion by highlighting several additional applications that have benefited from a consideration of nanoscale thermal transport phenomena, including RF electronics and neuromorphic computing.

Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoyang Xiong ◽  
Yue Qin ◽  
Linhong Li ◽  
Guoyong Yang ◽  
Maohua Li ◽  
...  

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing thermal...


2021 ◽  
Vol 11 (13) ◽  
pp. 5933
Author(s):  
Wei-Jen Chen ◽  
I-Ling Chang

This study investigated the thermal transport behaviors of branched carbon nanotubes (CNTs) with cross and T-junctions through non-equilibrium molecular dynamics (NEMD) simulations. A hot region was created at the end of one branch, whereas cold regions were created at the ends of all other branches. The effects on thermal flow due to branch length, topological defects at junctions, and temperature were studied. The NEMD simulations at room temperature indicated that heat transfer tended to move sideways rather than straight in branched CNTs with cross-junctions, despite all branches being identical in chirality and length. However, straight heat transfer was preferred in branched CNTs with T-junctions, irrespective of the atomic configuration of the junction. As branches became longer, the heat current inside approached the values obtained through conventional prediction based on diffusive thermal transport. Moreover, directional thermal transport behaviors became prominent at a low temperature (50 K), which implied that ballistic phonon transport contributed greatly to directional thermal transport. Finally, the collective atomic velocity cross-correlation spectra between branches were used to analyze phonon transport mechanisms for different junctions. Our findings deeply elucidate the thermal transport mechanisms of branched CNTs, which aid in thermal management applications.


2016 ◽  
Vol 68 (4) ◽  
Author(s):  
Peng Xu ◽  
Agus Pulung Sasmito ◽  
Boming Yu ◽  
Arun Sadashiv Mujumdar

Treelike structures abound in natural as well as man-made transport systems, which have fascinated multidisciplinary researchers to study the transport phenomena and properties and understand the transport mechanisms of treelike structures for decades. The fluid flow and heat transfer in treelike networks have received an increasing attention over the past decade as the highly efficient transport processes observed in natural treelike structures can provide useful hints for optimal solutions to many engineering and industrial problems. This review paper attempts to present the background and research progress made in recent years on the transport phenomenon in treelike networks as well as technological applications of treelike structures. The subtopics included are optimization of branching structures, scaling laws of treelike networks, and transport properties for laminar flow, turbulent flow, heat conduction, and heat convection in treelike networks. Analytical expressions for the effective transport properties have been derived based on deterministic treelike networks, and the effect of branching parameters on the transport properties of treelike networks has also been discussed. Furthermore, numerical simulation results for treelike microchannel networks are presented as well. The proposed transport properties may be beneficial to understand the transport mechanisms of branching structures and promote the applications of treelike networks in engineering and industry.


2021 ◽  
Vol 9 (39) ◽  
pp. 13755-13760
Author(s):  
Songcheng Hu ◽  
Zhenhua Tang ◽  
Li Zhang ◽  
Dijie Yao ◽  
Zhigang Liu ◽  
...  

The new effects induced by light in materials have important potential applications in optoelectronic multifunctional electronic devices.


Nanoscale ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 4301-4310 ◽  
Author(s):  
Yang Hong ◽  
Jingchao Zhang ◽  
Xiao Cheng Zeng

Lateral and flexural thermal transport processes in monolayer and bilayer C3N are systematically investigated using MD simulation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 285 ◽  
Author(s):  
Yi Yang ◽  
Dan Zhong ◽  
Yilun Liu ◽  
Donghui Meng ◽  
Lina Wang ◽  
...  

As a derivative material of graphene, graphene oxide films hold great promise in thermal management devices. Based on the theory of Fourier formula, we deduce the analytical formula of the thermal conductivity of graphene oxide films. The interlaminar thermal property of graphene oxide films is studied using molecular dynamics simulation. The effect of vacancy defect on the thermal conductance of the interface is considered. The interfacial heat transfer efficiency of graphene oxide films strengthens with the increasing ratio of the vacancy defect. Based on the theoretical model and simulation results, we put forward an optimization model of the graphene oxide film. The optimal structure has the minimum overlap length and the maximum thermal conductivity. An estimated optimal overlap length for the GO (graphene-oxide) films with degree of oxidation 10% and density of vacancy defect 2% is 0.33 μm. Our results can provide effective guidance to the rationally designed defective microstructures on engineering thermal transport processes.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Fangyu Cao ◽  
Ying Liu ◽  
Jiajun Xu ◽  
Yadong He ◽  
B. Hammouda ◽  
...  

Author(s):  
Koichi Mashiko ◽  
Masataka Mochizuki ◽  
Yuji Saito ◽  
Yasuhiro Horiuchi ◽  
Thang Nguyen ◽  
...  

Recently energy saving is most important concept for all electric products and production. Especially, in Data-Center cooling system, power consumption of current air cooling system is increasing. For not only improving thermal performance but also reducing electric power consumption of this system, liquid cooling system has been developed. This paper reports the development of cold plate technology and vapor chamber application by using micro-channel fin. In case of cold plate application, micro-channel fin technology is good for compact space design, high thermal performance, and easy for design and simulation. Another application is the evaporating surface for vapor chamber. The well-known devices for effective heat transfer or heat spreading with the lowest thermal resistance are heat pipes and vapor chamber, which are two-phase heat transfer devices with excellent heat spreading and heat transfer characteristics. Normally, vapor chamber is composed of sintered power wick. Vapor chamber container is mechanically supported by stamped pedestal or wick column or solid column, but the mechanical strength is not enough strong. So far, the application is limited in the area of low strength assembly. Sometime the mechanical supporting frame is design for preventing deformation. In this paper, the testing result of sample is described that thermal resistance between the heat source and the ambient can be improved approximately 0.1°C/W by using the micro-channel vapor chamber. Additionally, authors presented case designs using vapor chamber for cooling computer processors, and proposed ideas of using micro-channel vapor chamber for heat spreading to replace the traditional metal plate heat spreader.


2011 ◽  
Vol 83 (5) ◽  
Author(s):  
Kirill A. Velizhanin ◽  
Chih-Chun Chien ◽  
Yonatan Dubi ◽  
Michael Zwolak

Sign in / Sign up

Export Citation Format

Share Document