scholarly journals A New Approach to Modeling Slip and Work Input for Centrifugal Compressors

Author(s):  
Herbert Harrison ◽  
Nicole L. Key

Abstract A new method of modeling slip factor and work input for centrifugal compressor impellers is presented. Rather than using geometry to predict the behavior of the flow at the impeller exit, the new method leverages governing relationships to predict the work input delivered by the impeller with dimensionless design parameters. The approach incorporates both impeller geometry and flow conditions and, therefore, is inherently able to predict the slip factor both at design and off-design conditions. Five impeller cases are used to demonstrate the efficacy of the method, four of which are well documented in the open literature. Multiple implementations of the model are introduced to enable users to customize the model to specific applications. Significant improvement in the accuracy of the prediction of slip factor and work input is obtained at both design and off-design conditions relative to Wiesner's slip model. While Wiesner's model predicts the slip factor of 52% of the data within ±0.05 absolute error, the most accurate implementation of the new model predicts 99% of the data within the same error band. The effects of external losses on the model are considered, and the new model is fairly insensitive to the effects of external losses. Finally, detailed procedures to incorporate the new model into a meanline analysis tool are provided in the appendices.

Author(s):  
Herbert M. Harrison ◽  
Nicole L. Key

Abstract A new method of modeling slip factor and work input for centrifugal compressor impellers is presented. Rather than using geometry to predict the behavior of the flow at the impeller exit, the new method leverages governing relationships to predict the work input delivered by the impeller with dimensionless design parameters. The approach incorporates both impeller geometry and flow conditions and, therefore, is inherently able to predict the slip factor both at design and off-design conditions. Five impeller cases are used to demonstrate the efficacy of the method, four of which are well documented in the open literature. Multiple implementations of the model are introduced to enable users to customize the model to specific applications. Significant improvement in the accuracy of the prediction of slip factor and work input is obtained at both design and off-design conditions relative to Wiesner’s slip model. While Wiesner’s model predicts the slip factor of 52% of the data within ±0.05 absolute error, the most accurate implementation of the new model predicts 99% of the data within the same error band. The effects of external losses on the model are considered, and the new model is fairly insensitive to the effects of external losses. Finally, detailed procedures to incorporate the new model into a meanline analysis tool are provided in the appendices.


2019 ◽  
Vol 10 (1) ◽  
pp. 207
Author(s):  
Yichao Ye ◽  
Limin Peng ◽  
Yang Zhou ◽  
Weichao Yang ◽  
Chenghua Shi ◽  
...  

Friction resistance usually constitutes one of the two main components for the calculation of required jacking force. This paper provides a new approach to predict the friction resistance of slurry pipe jacking. First, the existing prediction equations and their establishment methods and essential hypotheses used were carefully summarized and compared, providing good foundations for the establishment of the new model. It was found that the friction resistance can be uniformly calculated by multiplying an effective friction coefficient and the normal force acting on the external surface of the pipe. This effective friction coefficient is introduced to reflect the effect of contact state of pipe-soil-slurry, highly affected by the effect of lubrication and the interaction of pipe-soil-slurry. The critical quantity of pipe-soil contact angle (or width) involved may be calculated by Persson’s contact model. Then, the equation of normal force was rederived and determined, in which the vertical soil stress should be calculated by Terzaghi’s silo model with parameters proposed by the UK Pipe Jacking Association. Different from the existing prediction models, this new approach has taken into full consideration the effect of lubrication, soil properties (such as internal friction angle, cohesion, and void ratio), and design parameters (such as buried depth, overcut, and pipe diameter). In addition, four field cases and a numerical simulation case with various soils and design parameters were carefully selected to check out the capability of the new model. There was greater satisfaction with the measured data as compared to the existing models and the numerical simulation approach, indicating that the new approach not only has higher accuracy but is also more flexible and has a wider applicability. Finally, the influence of buried depth, overcut, and pipe diameter on the friction resistance and lubrication efficiency were analyzed, and the results can be helpful for the future design.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2345-2348 ◽  
Author(s):  
C. N. Haas

A new method for the quantitative analysis of multiple toxicity data is described and illustrated using a data set on metal exposure to copepods. Positive interactions are observed for Ni-Pb and Pb-Cr, with weak negative interactions observed for Ni-Cr.


2021 ◽  
pp. 095745652199987
Author(s):  
Magaji Yunbunga Adamu ◽  
Peter Ogenyi

This study proposes a new modification of the homotopy perturbation method. A new parameter alpha is introduced into the homotopy equation in order to improve the results and accuracy. An optimal analysis identifies the parameter alpha, aimed at improving the solutions. A comparative analysis of the proposed method reveals that the new method presents results with higher degree of accuracy and precision than the classic homotopy perturbation method. Absolute error analysis shows the convenience of the proposed method, providing much smaller errors. Two examples are presented: Duffing and Van der pol’s nonlinear oscillators to demonstrate the efficiency, accuracy, and applicability of the new method.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


1992 ◽  
Vol 101 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Eiji Yanagisawa ◽  
Ken Yanagisawa ◽  
Jay B. Horowitz ◽  
Lawrence J. Mambrino

A new approach to microlaryngeal surgery using a specially designed video microlaryngoscope with a rigid endoscopic telescope and an attached video camera was introduced by Kantor et al in 1990. The ability to video document and perform surgery of the larynx by viewing a high-resolution television image was demonstrated. This method was recommended over the standard microscopic technique for increased visibility with greater depth of field, unimpeded instrument access, instant documentation, and superior teaching value. The authors tried this new method and the standard microscopic technique at the same sitting on a series of patients. This paper will compare these two different techniques and discuss their advantages and disadvantages. Although the new method has many advantages, the standard microscopic technique remains as a valuable method in laryngeal surgery.


2004 ◽  
Vol 61 (7) ◽  
pp. 1269-1284 ◽  
Author(s):  
RIC Chris Francis ◽  
Steven E Campana

In 1985, Boehlert (Fish. Bull. 83: 103–117) suggested that fish age could be estimated from otolith measurements. Since that time, a number of inferential techniques have been proposed and tested in a range of species. A review of these techniques shows that all are subject to at least one of four types of bias. In addition, they all focus on assigning ages to individual fish, whereas the estimation of population parameters (particularly proportions at age) is usually the goal. We propose a new flexible method of inference based on mixture analysis, which avoids these biases and makes better use of the data. We argue that the most appropriate technique for evaluating the performance of these methods is a cost–benefit analysis that compares the cost of the estimated ages with that of the traditional annulus count method. A simulation experiment is used to illustrate both the new method and the cost–benefit analysis.


Author(s):  
Tom I-P. Shih ◽  
Yu-Liang Lin ◽  
Andrew J. Flores ◽  
Mark A. Stephens ◽  
Mark J. Rimlinger ◽  
...  

Abstract A pre-processor was developed to assist CFD experts and non-experts in performing steady, three-dimensional Navier-Stokes analysis of a class of inlet-bleed problems involving oblique shock-wave/ boundary-layer interactions on a flat plate with bleed into a plenum through rows of circular holes. With this pre-processor, once geometry (e.g., hole dimensions and arrangement) and flow conditions (e.g., Mach number, boundary-layer thickness, incident shock location) are inputted, it will automatically generate every file needed to perform a CFD analysis from the grid system to initial and boundary conditions. This is accomplished by accessing a knowledge base established by experts who understand both CFD and the class of problems being analyzed. For experts in CFD, this tool greatly reduces the amount of time and effort needed to setup a problem for CFD analysis. It also provides experts with knobs to make changes to the setup if desired. For non-experts in CFD, this tool enables reliable and correct usage of CFD. A typical session on a workstation from data input to the generation of all files needed to perform a CFD analysis involves less than ten minutes. This pre-processor, referred to as AUTOMAT-V2, is an improved version of a code called AUTOMAT. Improvements made include: (1) multi-block structured grids can be patched in addition to being overlapped; (2) embedded grids can be introduced near bleed holes to reduce the number of grid points/cells needed by a factor of up to four; (3) grid systems generated allow up to three levels of multigrid; (4) CFL3D is supported in addition to OVERFLOW, two well-known and highly regarded Navier-Stokes solvers developed at NASA’s Langley and Ames Research Centers; (5) all files needed to run RONNIE for patched grids and MAGGIE for overlapped grids are also generated; and (6) more design parameters can be investigated including the study of micro bleed and effects of flow/hole misalignments.


2000 ◽  
Vol 639 ◽  
Author(s):  
T. Detchprohm ◽  
M. Yano ◽  
R. Nakamura ◽  
S. Sano ◽  
S. Mochiduki ◽  
...  

ABSTRACTWe have developed a new method to prepare low-dislocation-density GaN by using periodically grooved substrates in a conventional MOVPE growth technique. This new approach was demonstrated for GaN grown on periodically grooved α-Al2O3(0001), 6H-SiC(0001)Si and Si(111) substrates. Dislocation densities were 2×107 cm−2 in low-dislocation-density area.


Author(s):  
Carlo Cravero ◽  
Martino Marini

The authors decided to organize their design/analysis computational tools in an integrated software suite in order to help teaching radial turbine, taking advantage of their research background and a set of codes previously developed. The software is proposed for use during class works and the student can either use a single design/analysis tool or face a complete design loop consisting of iterations between design and analysis tools. The intended users are final year students in mechanical engineering. The codes output are discussed with two practical examples in order to highlight the turbomachinery performance at design and off-design conditions. The above suite gives the student the opportunity of getting used to different concepts (choking, blade loading, performance maps, …) that are encountered in turbomachinery design and of understanding the effects of the main design parameters.


Sign in / Sign up

Export Citation Format

Share Document