Impact Pressure Evaluation of Water Jet Peening on Typical Concave Surfaces: Theoretical and Finite Element Analysis

2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Shusen Zhao ◽  
Zhanshu He ◽  
Yanmin Li

Abstract Water jet peening (WJP), a surface modification technique, can use the impact pressure induced by shock waves to introduce compressive residual stress in the surface of metal parts, thereby improving the fatigue life of metal parts, especially has broad application prospects in strengthening the concave surface area of metal parts. The impact pressure of the concave surface is different compared with the flat surface due to the effects of geometrical factors on the shock wave released. In this work, a mathematical model for calculating the peak pressure in the initial contact area of the concave surface is developed, and the effects of geometric factors (opening angle of V surface α and spherical radius R) and WJP parameters (jet velocity v and jet diameter d) on the peak pressure are analyzed by using finite element simulation models of WJP on concave V-shaped surface, concave spherical surface, V-groove surface, spherical groove surface, and spherical groove surface established with the coupled Eulerian–Lagrangian (CEL) algorithm of abaqus. A mechanism of impact pressure evaluation of the concave surface is developed to explain the peak pressure results obtained from finite element models. The results show that the peak pressure is mainly determined by α and v, while d does not affect the peak pressure for a concave V-shaped or V-groove surface. The peak pressure is mainly determined by R, v, and d for a concave spherical or spherical groove surface.

2012 ◽  
Vol 12 (03) ◽  
pp. 1250034 ◽  
Author(s):  
M. M. KHANI ◽  
H. KATOOZIAN ◽  
K. AZMA ◽  
I. NASEH ◽  
A. H. SALIMI

The heel-pad as a biological shock absorber has an important role in the initial contact phase of gait cycle dissipating the impact forces resulted in locomotion. An axisymmetric finite element model of human heel-pad has been generated and the heel-pad experimental data deduced from a published force-deflection graph of the same specimen (Iain R. Spears, Janice E. Miller-Young), Iterative identification task has been used to extract nonlinear material properties describing hyper-elastic behavior of heel-pad. The genetic algorithm was incorporated into estimation process using an interface program. Two parameters of hyper-elastic materials potential energy function represented by Mooney–Rivlin were determined by using the genetic algorithm technique to minimize the displacement error between the experimental data and the corresponding finite element results after a considerable number of iterations. The result can be used for design and construction of synthetic heel-pad and therapeutic foot wear as well as insoles, especially for diabetic patients.


Author(s):  
J. W. Kim ◽  
I. H. Sim ◽  
J. M. Lee ◽  
Y. B. Lee ◽  
K. J. Bai

A three-dimensional finite-element method is developed to calculate the impact pressure due to liquid sloshing in LNG tank. A finite-element method presented here is based on a variational principle in velocity-potential formulation, which was developed by Kim et al (ISOPE 2003). The tank motions are extended to the six degrees of freedom motions; both translational and rotational motions. Numerical result for an example of an LNG tank shows good agreement with model test results and three-dimensional effect needs to be considered to estimate correct impact pressure at tank corners.


Kapal ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 51-57
Author(s):  
Suandar Baso ◽  
Andi Nadia Himaya ◽  
Faizal Arya Samman ◽  
Andi Dian Eka Anggriani ◽  
Rosmani Rosmani

The impact pressure induced by slamming can imply physical damage on a ship. The high probability of the slamming impact is on the bow part in the actual sea state. In this present study, the slamming induced pressure on the bow flare of a ship have been investigated through the experiment. The experiment was schemed by the dropping test based on free-falling body in the wave tank, wherein the bow of the ship model was inclined in several impact angles 0° to 30° to the free-water surface. To measure slamming impact pressure acting on the bow flare, the piezoelectric sensors S1, S2, S3, S4 were attached to the bow section and installed on a computer. As the obtained results, the impact pressure on bow flare occurred in a short time duration caused by slamming. The discrepancy of the peak impact pressure between ship model weight of 2.42 kg and 7.29 kg for the impact angle 0° is 70.36% S1, 69.52% S2, 68.97% S3, and 68.34% S4. For the relative impact angle of 30°, the discrepancy is 67.02% S1, 65.73% S2, 58.51% S3, and 48.21% S4. The tendency of the peak pressure coefficient at the sequenced impact points S1, S2, S3, S4 is similar for all impact angles 0°, 10°, 20°, and 30°. The peak pressure coefficient due to the full load condition is highest in the nearest bottom part, and the peak pressure coefficients due to the lightship condition highest in the nearest bottom part caused by the small impact angle.


2011 ◽  
Vol 52-54 ◽  
pp. 1873-1878 ◽  
Author(s):  
Anirut Matthujak ◽  
Chaidet Kasamnimitporn ◽  
Wuttichai Sittiwong ◽  
Kulachate Pianthong

This study is to measure the impact pressure of high-speed water jet injected in water at the stand-off distance from the nozzle exit. The high-speed water jets are generated by the impact of a projectile, which known as impact acceleration method, launched by Horizontal Single Stage Power Gun. The maximum averaged jet velocity of about 374.24 m/s in water was generated in this experiment. The impact pressure of high-speed water jet in water at the stand-off distance 15, 20, 30 and 40 mm from the nozzle exit was measured by the PVDF pressure sensor. Moreover, the impact phenomena of the jet were visualized by a high-speed video camera with shadowgraph optical arrangement. From the pressure sensor, two peak over-pressures are always observed in this experiment. From visualization, it was found that the two peak over-pressures of 24 GPa and 35 GPa at x = 15 mm were generated by the jet and the bubble impact, respectively. The peak over-pressure decreases exponentially as the stand-off distance between the PVDF pressure sensor to the nozzle exit increases. Moreover, the jet and the bubble impact on the PVDF pressure sensor, shock waves, and bubble deformation were obviously observed in this study.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Shouqing Lu ◽  
Chengfeng Wang ◽  
Wei Wang ◽  
Mingjie Li ◽  
Dongti Zhang

A large proportion of minable coal seams in China belong to low-permeability soft coal seams. Such coal seams suffer serious coal and gas outburst hazards and endure a high incidence of major disasters in coal mines. The adoption of the high-pressure water jet (HPWJ) hydraulic flushing cavity can effectively promote the gas drainage efficiency and volume and eliminate the hidden danger of gas disasters. Nevertheless, the shape and impact pressure of rotating HPWJ are rarely researched. In this study, on the basis of the numerical simulation, the axial and radial stress distributions of HPWJ and the energy-gathering effect of a conical-cylindrical combined nozzle were analyzed. It is concluded that the submerged condition will accelerate the attenuation of jet velocity and reduce the impact strength of the jet. The jet diffusion angle grows with the increases in the nozzle diameter and water pressure, and 24° is the optimal contraction angle. Finally, the influences of factors such as the rotation speed on the shape and impact pressure of HPWJ were explored, and the results show that the rotation speed should be controlled within 90 r/min. The research findings lay the foundation of the study on the mechanism of coal crushing by HPWJ and provide technical support for the research and development of drilling and flushing integrated equipment.


Crisis ◽  
2010 ◽  
Vol 31 (5) ◽  
pp. 238-246 ◽  
Author(s):  
Paul W. C. Wong ◽  
Wincy S. C. Chan ◽  
Philip S. L. Beh ◽  
Fiona W. S. Yau ◽  
Paul S. F. Yip ◽  
...  

Background: Ethical issues have been raised about using the psychological autopsy approach in the study of suicide. The impact on informants of control cases who participated in case-control psychological autopsy studies has not been investigated. Aims: (1) To investigate whether informants of suicide cases recruited by two approaches (coroners’ court and public mortuaries) respond differently to the initial contact by the research team. (2) To explore the reactions, reasons for participation, and comments of both the informants of suicide and control cases to psychological autopsy interviews. (3) To investigate the impact of the interviews on informants of suicide cases about a month after the interviews. Methods: A self-report questionnaire was used for the informants of both suicide and control cases. Telephone follow-up interviews were conducted with the informants of suicide cases. Results: The majority of the informants of suicide cases, regardless of the initial route of contact, as well as the control cases were positive about being approached to take part in the study. A minority of informants of suicide and control cases found the experience of talking about their family member to be more upsetting than expected. The telephone follow-up interviews showed that none of the informants of suicide cases reported being distressed by the psychological autopsy interviews. Limitations: The acceptance rate for our original psychological autopsy study was modest. Conclusions: The findings of this study are useful for future participants and researchers in measuring the potential benefits and risks of participating in similar sensitive research. Psychological autopsy interviews may be utilized as an active engagement approach to reach out to the people bereaved by suicide, especially in places where the postvention work is underdeveloped.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


Sign in / Sign up

Export Citation Format

Share Document