Study on Performance Enhancement of a Flapping Foil Energy Harvester Using Circulation Control

2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Fangrui Shi ◽  
Xiaojing Sun

Abstract Oscillating motion, an effective way to harvest energy, has gradually become a hotspot in bionic motion research in recent years. Means of improving the energy-extraction efficiency of a flapping foil harvester have long been a focus of researchers. This paper proposes a new flapping foil harvester with circulation control and explores the effects of different parameters on its energy-extraction capacity to improve efficiency and achieve lowest cost. Setting the injection ports on the upper and lower surfaces near the trailing edge of the foil and implementing injection control during motion, the effects of the location of the injection port, pitching amplitude, momentum coefficient, reduced frequency, and jet mode on the circulation control flapping foil are systematically investigated under the condition of a Reynolds number of 13,800. The results show that circulation control can enhance the energy-extraction efficiency of a flapping foil across a wide range of parameters, in which the location of the injection port and momentum coefficient have the most obvious influence on efficiency, followed by pitching amplitude and reduced frequency. In addition, the jet mode is a crucial factor affecting net efficiency. Relative to the constant mode, the triangular mode of circulation control has the lowest energy consumption, and the net energy-extraction efficiency reaches up to 38.77% under a reduced frequency of 0.12, which is 22.24% higher than that of the plain flapping foil.

2015 ◽  
Vol 27 (5) ◽  
pp. 053103 ◽  
Author(s):  
Jian Deng ◽  
Lubao Teng ◽  
Dingyi Pan ◽  
Xueming Shao

2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Y. L. Wang ◽  
W. Jiang ◽  
Y. H. Xie

Due to the deficiency of the research on parallel foils, the parallel configuration of foils is concerned and the effects of motion parameters on energy extraction are systematically discussed in the present study. The foils undergo combined plunging and pitching motions. The effects of motion parameters (pitching amplitude, plunging amplitude, reduced frequency, and spacing between foils) in wide range are investigated at Re = 1100 through two-dimensional (2D) unsteady laminar flow simulations. The features of power output and efficiency changing with these motion parameters as well as the evolution of the vortex fields are gained. The principle that how motion parameters affecting energy extraction performance is studied. The extraction performance of parallel foils and single foil is compared at the optimal working parameters of the single foil. Numerical results indicate the optimal extraction performance of the parallel foils is superior to that of the single foil. CPm improves by 6.87% relatively. Therefore, it reveals that the parallel foils can perform the better extraction characteristics than the single foil by controlling parameters.


Author(s):  
Wendi Liu ◽  
Qing Xiao

The present study aims to investigate how the flexure of oscillating wings affect their hydrodynamic performance and tidal energy extraction efficiency based on their flapping motions. To achieve this goal, a numerical simulation is carried out by solving a low Mach number compressible Navier-Stokes equation for a parallel arranged twin wing system. Simulation covers a wide range of flapping frequency, various effective angles of attack, the degree of flexure and the gap between two wings. Our results indicate the improved energy efficiency with the use of flexible blade as compared to its rigid counterpart. This becomes more significant especially at high oscillating frequency.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


2013 ◽  
Vol 10 (2) ◽  
pp. 99-108 ◽  
Author(s):  
J. A. Esfahani ◽  
E. Barati ◽  
Hamid Reza Karbasian

In flapping underwater vehicles the propulsive performance of harmonically sinusoidal heaving and pitching foil will be degraded by some awkward changes in effective angle of attack profile, as the Strouhal number increases. This paper surveys different angle of attack profiles (Sinusoidal, Square, Sawtooth and Cosine) and considers their thrust production ability. In the wide range of Strouhal numbers, thrust production of Square profile is considerable but it has a discontinuity in heave velocity profile, in which an infinite acceleration exists. This problem poses a significant defect in control of flapping foil. A novel profile function is proposed to omit sharp changes in heave velocity and acceleration. Furthermore, an optimum profile is found for different Strouhal numbers with respect to Square angle of attack profile.DOI: http://dx.doi.org/10.3329/jname.v10i2.14229


2020 ◽  
Vol 10 (18) ◽  
pp. 6226
Author(s):  
Zhanfeng Qi ◽  
Lishuang Jia ◽  
Yufeng Qin ◽  
Jian Shi ◽  
Jingsheng Zhai

A numerical investigation of the propulsion performance and hydrodynamic characters of the full-active flapping foil under time-varying freestream is conducted. The finite volume method is used to calculate the unsteady Reynolds averaged Navier–Stokes by commercial Computational Fluid Dynamics (CFD) software Fluent. A mesh of two-dimensional (2D) NACA0012 foil with the Reynolds number Re = 42,000 is used in all simulations. We first investigate the propulsion performance of the flapping foil in the parameter space of reduced frequency and pitching amplitude at a uniform flow velocity. We define the time-varying freestream as a superposition of steady flow and sinusoidal pulsating flow. Then, we study the influence of time-varying flow velocity on the propulsion performance of flapping foil and note that the influence of the time-varying flow is time dependent. For one period, we find that the oscillating amplitude and the oscillating frequency coefficient of the time-varying flow have a significant influence on the propulsion performance of the flapping foil. The influence of the time-varying flow is related to the motion parameters (reduced frequency and pitching amplitude) of the flapping foil. The larger the motion parameters, the more significant the impact of propulsion performance of the flapping foil. For multiple periods, we note that the time-varying freestream has little effect on the propulsion performance of the full-active flapping foil at different pitching amplitudes and reduced frequency. In summary, we conclude that the time-varying incoming flow has little effect on the flapping propulsion performance for multiple periods. We can simplify the time-varying flow to a steady flow field to a certain extent for numerical simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Md. Shahidul Alam ◽  
Norbahiah Misran ◽  
Baharudin Yatim ◽  
Mohammad Tariqul Islam

Electromagnetic band gap (EBG) technology has become a significant breakthrough in the radio frequency (RF) and microwave applications due to their unique band gap characteristics at certain frequency ranges. Since 1999, the EBG structures have been investigated for improving performances of numerous RF and microwave devices utilizing the surface wave suppression and the artificial magnetic conductor (AMC) properties of these special type metamaterial. Issues such as compactness, wide bandwidth with low attenuation level, tunability, and suitability with planar circuitry all play an important role in the design of EBG structures. Remarkable efforts have been undertaken for the development of EBG structures to be compatible with a wide range of wireless communication systems. This paper provides a comprehensive review on various EBG structures such as three-, two-, and one-dimensional (3D, 2D, and 1D) EBG, mushroom and uniplanar EBG, and their successive advancement. Considering the related fabrication complexities, implementation of vialess EBG is an attractive topic for microwave engineers. For microstrip antennas, EBG structures are used in diversified ways, which of course found to be effective except in some cases. The EBG structures are also successfully utilized in antenna arrays for reducing the mutual coupling between elements of the array. Current challenges and limitations of the typical microstrip antennas and different EBG structures are discussed in details with some possible suggestions. Hopefully, this survey will guide to increasing efforts towards the development of more compact, wideband, and high-efficient uniplanar EBG structures for performance enhancement of antenna and other microwave devices.


2015 ◽  
Vol 72 (9) ◽  
pp. 3378-3388 ◽  
Author(s):  
Usama Anber ◽  
Shuguang Wang ◽  
Adam Sobel

Abstract The effects of turbulent surface fluxes and radiative heating on tropical deep convection are compared in a series of idealized cloud-system-resolving simulations with parameterized large-scale dynamics. Two methods of parameterizing the large-scale dynamics are used: the weak temperature gradient (WTG) approximation and the damped gravity wave (DGW) method. Both surface fluxes and radiative heating are specified, with radiative heating taken as constant in the vertical in the troposphere. All simulations are run to statistical equilibrium. In the precipitating equilibria, which result from sufficiently moist initial conditions, an increment in surface fluxes produces more precipitation than an equal increment of column-integrated radiative heating. This is straightforwardly understood in terms of the column-integrated moist static energy budget with constant normalized gross moist stability. Under both large-scale parameterizations, the gross moist stability does in fact remain close to constant over a wide range of forcings, and the small variations that occur are similar for equal increments of surface flux and radiative heating. With completely dry initial conditions, the WTG simulations exhibit hysteresis, maintaining a dry state with no precipitation for a wide range of net energy inputs to the atmospheric column. The same boundary conditions and forcings admit a rainy state also (for moist initial conditions), and thus multiple equilibria exist under WTG. When the net forcing (surface fluxes minus radiative heating) is increased enough that simulations that begin dry eventually develop precipitation, the dry state persists longer after initialization when the surface fluxes are increased than when radiative heating is increased. The DGW method, however, shows no multiple equilibria in any of the simulations.


2020 ◽  
Author(s):  
Yulu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract An experiment facility of parallel-foil turbine is proposed in this study. The flow field around foils at different reduced frequency, pitching amplitude and plunging amplitude is measured by 2D Particle Image Velocimetry (PIV) system. And the energy extraction performance at different motion parameters is analyzed numerically. The comparison between experimental and numerical flow field is conducted at different reduced frequency. The evolution of flow field and the aerodynamic force with different pitching amplitude and plunging amplitude are discussed. The effect of pitching amplitude and plunging amplitude on energy extraction performance is obtained. Results indicate that the pitching amplitude can increase the range and the strength of acceleration area by varying the pitching velocity and the effective angle of attack. The optimal extraction performance appears at 70°. Due to the increase in plunging amplitude, the energy extraction performance and efficiency increase gradually. The optimal plunging amplitude is 1.0. The pitching amplitude and the plunging amplitude influence the power output by affecting the vortex shedding and the flow reattachment in oscillation process.


Sign in / Sign up

Export Citation Format

Share Document