Thermal Post-Buckling Strength Prediction and Improvement of SMA Bonded Carbon Nanotube-Reinforced Shallow Shell Panel: A Nonlinear FE Micromechanical Approach

Author(s):  
Kulmani Mehar ◽  
Pradeep Kumar Mishra ◽  
Subrata Panda

Abstract This article reported first-time the post-buckling temperature load parameter values of nanotube-reinforced polymeric composite panel and their improvement by introducing the functional material (shape memory alloy, SMA) fibre. The temperature load values of nanotube composite and SMA activation are modelled using the single-layer type higher-order kinematic model in association with isoparametric finite element technique. To ensure the effective properties of SMA bonded nanotube composite under the elevated temperature, a hybrid micromechanical material modelling approach is adopted (Mori-Tanaka scheme and rule of mixture). The present structural geometry distortion under elevated temperature is modelled through the nonlinear strain kinematics (Green-Lagrange), whereas the strain reversal achieved with the help of marching technique (inclusion of material nonlinearity). Owing to the importance of geometrical distortion of the polymeric structure, the current model includes all of the nonlinear strain terms to accomplish the exact deformation. Further, to compute the post-buckling responses, the governing nonlinear eigenvalue equations are derived by Hamilton's principle. The numerical solution accuracy is verified with adequate confirmation of model consistency. The material model applicability for different structural configurations including important individual/combined parameter tested through a series of examples. Moreover, the final understanding relevant to the post-buckling characteristics of the polymeric structure and SMA influences is highlighted in details considering the prestrain, recovery stress and their volume fractions.

2013 ◽  
Vol 477-478 ◽  
pp. 39-42
Author(s):  
Marek Barski ◽  
Aleksander Muc ◽  
Przemysław Pastuszak ◽  
Agnieszka Bondyra

The present work is devoted to the analysis of a buckling behavior of a cylindrical composite panel. The considered structure is subjected to the uniform axial compression. The wall of the panel consists of the 8 layers. In addition, in the geometrical center of the structure there is a square delamination located between the fourth and the fifth layer. The main goal is to determine the buckling and post - buckling behavior as well as the influence of the delamination on the stability of the structure. The nonlinear numerical analysis is carried out with aid of the FEM method. The experimental verification is also performed. The results obtained from numerical and experimental analysis show very similar behavior of the structure.


2014 ◽  
Vol 14 (07) ◽  
pp. 1450030 ◽  
Author(s):  
Yaobin Niu ◽  
Zhongwei Wang ◽  
Weihua Zhang

In this paper, the differential quadrature method (DQM) was extended to deal with the nonlinear thermal flutter problem of supersonic composite laminated panel. Based on Hamilton's principle, the nonlinear thermal flutter model of composite panels was first established. The model adopted the von Karman large deflection plate theory for the geometrical nonlinearity, and the third order piston theory for the supersonic aerodynamic loads. Convergence and accuracy studies were carried out to verify the proposed approach. Finally, the nonlinear thermal flutter characteristics of a supersonic composite panel were studied. Uniform temperatures were first applied to the model in order to determine general heating effects on the stability of the composite panel. Owing to the varying structural stiffness of composite panels when subjected to thermal stresses, the thermal load reduced the frequency of composite panel, as well as the frequency interval between the first frequency and the second frequency; thereby hastening the flutter of composite panel. The nonlinear thermal flutter velocity ratio was decreased with respect to increasing temperature load for all aspect ratios. However, the influence of thermal loadings on flutter with various cross angles was different. Cases of unequal temperatures were considered. The average temperature load was kept constant which differs from the temperature gradient form of loading. The results show that the nonlinear thermal frequencies are affected in the presence of different temperature distributions. The changes in the temperature distribution have a slightly greater effect than changes in the average temperature. These effects due to temperature distribution changes do not have a substantial effect on the flutter dynamic pressure.


Author(s):  
WARUNA SENEVIRATNE ◽  
VISHNU SASEENDRAN ◽  
SHENAL PERERA ◽  
BRANDON SAATHOFF ◽  
LAKSHAN RUBESINGHE ◽  
...  

2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Fariz Aswan Ahmad Zakwan ◽  
Renga Rao Krishnamoorthy ◽  
Azmi Ibrahim ◽  
Abdul Manaff Ismail

Cellular steel beam (CSB) is getting more and more popular to be used as the main structural member for steel building structure in the United Kingdom (UK). Despite quite costly to erect and assemble a steel structure member compared to concrete, it has several advantages in terms of lightweight material, higher strength, easy to assemble and aesthetic value. Even though the use of CSB is quite significantly positive, the negative side also needs to be addressed. Any steel structures are prone to fire exposure scenario. The strength of CSB will be significantly decreased when exposed to elevated temperature due to fire. Large deformation from experimental procedure will be clearly seen after the time-temperature curve reach critical stage. Vierendeel bending mechanism and web-post buckling are some of the drawbacks of the CSB at elevated temperature. In this paper, general purpose ABAQUS Finite Element (Version 6.14) on large deformation of protected and unprotected CSB at elevated temperature is proposed. Performance based approach is introduced to validate the numerical analysis with the experimental results from the available Compendium of UK Standard Fire Test Data produced by British Steel Corporation Research Services, Swinden Laboratories, UK.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Sridhar Sathyanarayanan ◽  
Seshu M. R. Adluri

The shell-to-bottom joint of hydrocarbon storage tanks is a critical location which may experience fatigue cracking and requires evaluation of the local cyclic stresses especially in the case of elevated temperature tanks. The fill/draw down cycle of the stored liquid causes low cycle fatigue near this joint and hence a fatigue evaluation is recommended. The peak alternating stress at this location, used to enter the fatigue curves is currently determined using a pseudo-elastic analysis that represents strain range due to inelastic deformations. API 650 employs beam on elastic foundation theory for this analysis. This theory is being used for tanks resting fully on earthen foundation as well as those on concrete ring wall. This paper studies the validity of using this theory for tanks with concrete ring wall foundation which are much more rigid compared to earthen foundations. Some of the difficulties in the current practice are highlighted. An alternative to the current model is presented for the determination of stresses in such tanks. The results are validated using finite element analysis. The results show that the current practice needs to be revised or rejustified in an alternative manner.


2016 ◽  
Vol 155 ◽  
pp. 184-196 ◽  
Author(s):  
Yu Feng ◽  
Haoyu Zhang ◽  
Xiangfei Tan ◽  
Yuting He ◽  
Tao An ◽  
...  

Author(s):  
Gauri Mahalle ◽  
Nitin Kotkunde ◽  
Amit Kumar Gupta ◽  
Swadesh Kumar Singh

Wrinkling is generally induced because of metal instability and considered as an undesirable defect in sheet metal forming processes. Wrinkling leads to severe influence on functional requirements and aesthetic appeal of final component. Thus, the present research is mainly dedicated on the experimental and numerical analysis for wrinkling behavior prediction of Inconel 718 alloy at elevated temperature conditions. Initially, Yoshida buckling tests (YBT) have been conducted to investigate wrinkling tendencies of Inconel 718 alloy from room temperature (RT) to 600°C by an interval of 200°C. Subsequently, Finite Element (FE) analysis of YBT has been performed to analyze post buckling behavior. Critical strain values at onset of wrinkling are determined and strain based wrinkling limit curves (ε-WLCs) are plotted at different temperatures. In-plane principal strains are transferred to effective plastic strain (EPS) versus triaxiality (η) space to differentiate the transformation between safe and wrinkling instability. Finally, complete forming behavior of alloy is represented by means of fracture, forming, and wrinkling limit curves. The gap between forming and wrinkling limit curves at elevated temperature is ∼1.5 times higher than that at room temperature.


1987 ◽  
Vol 54 (3) ◽  
pp. 558-562 ◽  
Author(s):  
I. Sheinman ◽  
M. Adan

A geometrical nonlinear theory of composite laminated beams is derived with the effect of transverse shear deformation taken into account. The theory is based on a high-order kinematic model, with the nonlinear differential equations solved by Newton’s method and a special finite-difference scheme. A parametric study of the shear effect involving several kinematic approaches was carried out for isotropic and anisotropic beams.


Sign in / Sign up

Export Citation Format

Share Document