Semi-Analytical Model to Predict the Elastic Post-buckling Response of Axially Compressed Cylindrical Shells with Tailored Distributed Stiffness

2021 ◽  
pp. 1-29
Author(s):  
Ali Imani Azad ◽  
Rigoberto Burgueño

Abstract This study introduces an approximate analytical model to predict the post-buckling response of cylinders with tailored nonuniform distributed stiffness. The shell's wall thickness, and thus its stiffness, is tailored so as to obtain multiple controlled elastic local buckling events when the cylinder is subjected to uniform axial compression. The proposed model treats cylinder segments of different stiffness as individual panels and combines their response by considering them as connected linear or nonlinear springs. The governing equations for the panels are formulated using von Karman's theory and solved by Galerkin's approximate method for a predefined radial deformation. Radial deformation functions are used to improve the model's accuracy and results show that the model's accuracy increases significantly with the number of considered radial functions. The model's predicted axial response for different cylinders are compared to results from experiments on 3D printed samples. Results indicate that this model accurately predicts the order of the buckling events while the buckling forces from the model are higher than those measured experimentally.

2008 ◽  
Vol 400-402 ◽  
pp. 227-232 ◽  
Author(s):  
Hua Song ◽  
Di Tao Niu ◽  
Si Yuan Liu

Corrosion products which occupy much greater volume accumulate, and generate expansive pressures on the surrounding concrete. The pressure builds up and eventually leads to the cover cracking of the structures. The cracking accelerates further corrosion and leads to the loss of the bond strength and the load carrying capacity. Corrosion cracking would reveal the reducing of the residual service life of the corrosion-affected structures. In this paper, an analytical model is proposed to predict the critical corrosion penetration at cover cracking in RC structures based on the crack process. An attempt has been made to develop the model by considering material properties of the surrounding concrete and expansive corrosion products. The problem is established as a boundary-value problem and the governing equations are expressed in terms of the radial displacement. The analytical predictions of the proposed model have also been in agreement with the available experimental data.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
A. B. Vallejo-Mora ◽  
M. Toril ◽  
S. Luna-Ramírez ◽  
M. Regueira ◽  
S. Pedraza

UpLink Power Control (ULPC) is a key radio resource management procedure in mobile networks. In this paper, an analytical model for estimating the impact of increasing the nominal power parameter in the ULPC algorithm for the Physical Uplink Shared CHannel (PUSCH) in Long Term Evolution (LTE) is presented. The aim of the model is to predict the effect of changing the nominal power parameter in a cell on the interference and Signal-to-Interference-plus-Noise Ratio (SINR) of that cell and its neighbors from network statistics. Model assessment is carried out by means of a field trial where the nominal power parameter is increased in some cells of a live LTE network. Results show that the proposed model achieves reasonable estimation accuracy, provided uplink traffic does not change significantly.


1999 ◽  
Author(s):  
Hwan-Sik Yoon ◽  
Gregory Washington

Abstract In this study, a smart aperture antenna of spherical shape is modeled and experimentally verified. The antenna is modeled as a shallow spherical shell with a small hole at the apex for mounting. Starting from five governing equations of the shallow spherical shell, two governing equations are derived in terms of a stress function and the axial deflection using Reissner’s approach. As actuators, four PZT strip actuators are attached along the meridians separated by 90 degrees respectively. The forces developed by the actuators are considered as distributed pressure loads on the shell surface instead of being applied as boundary conditions like previous studies. This new way of applying the actuation force necessitates solving for the particular solutions in addition to the homogeneous solutions for the governing equations. The amount of deflections is evaluated from the calculated stress function and the axial deflection. In addition to the analytical model, a finite element model is developed to verify the analytical model on the various surface positions of the reflector. Finally, an actual working model of the reflector is built and tested in a zero gravity environment, and the results of the theoretical model are verified by comparing them to the experimental data.


Author(s):  
Tuan A. Pham ◽  
Melis Sutman

The prediction of shear strength for unsaturated soils remains to be a significant challenge due to their complex multi-phase nature. In this paper, a review of prior experimental studies is firstly carried out to present important pieces of evidence, limitations, and some design considerations. Next, an overview of the existing shear strength equations is summarized with a brief discussion. Then, a micromechanical model with stress equilibrium conditions and multi-phase interaction considerations is presented to provide a new equation for predicting the shear strength of unsaturated soils. The validity of the proposed model is examined for several published shear strength data of different soil types. It is observed that the shear strength predicted by the analytical model is in good agreement with the experimental data, and get high performance compared to the existing models. The evaluation of the outcomes with two criteria, using average relative error and the normalized sum of squared error, proved the effectiveness and validity of the proposed equation. Using the proposed equation, the nonlinear relationship between shear strength, saturation degree, volumetric water content, and matric suction are observed.


Author(s):  
Pallavi Mirajkar ◽  
Rupali Dahake

The novel COVID sickness 2019 (COVID-19) pandemic caused by the SARS-CoV-2 keeps on representing a serious and vital threat to worldwide health. This pandemic keeps on testing clinical frameworks around the world in numerous viewpoints, remembering sharp increments in requests for clinic beds and basic deficiencies in clinical equipments, while numerous medical services laborers have themselves been infected. We have proposed analytical model that predicts a positive SARS-CoV-2 infection by considering both common and severe symptoms in patients. The proposed model will work on response data of all individuals if they are suffering from various symptoms of the COVID-19. Consequently, proposed model can be utilized for successful screening and prioritization of testing for the infection in everyone.


2011 ◽  
Vol 250-253 ◽  
pp. 2396-2406
Author(s):  
Shu Tong Yang

Ground anchors have been very practical in a wide range of geotechnical structures. Good bond properties at the anchor-mortar and mortar-rock interfaces can ensure transmitting an applied tensile load to a load bearing structure efficiently. The bond performance between the mortar and rock is necessary to be studied. A push-out test of mortar from rock block can be used to analyze the interfacial properties between the two materials. In this paper, an analytical model is proposed to determine the push-out capacity of mortar from rock block. Based on the deformation compatibility at the interface, the compressive stress in the mortar and the interfacial shear stress at the mortar-rock interface are formulated at different loading stages. By modeling interfacial debonding as an interfacial shear crack, the push-out load is then expressed as a function of the interfacial crack length. In virtue of the Lagrange Multiplier Method, the maximum push-out load is determined. The validity of the proposed model is verified with the experimental results. It can be concluded that if the interfacial parameters at the mortar-rock interface are obtained, the push-out capacity of mortar from rock block can be accurately determined using the proposed model. The proposed solution in this paper would provide a good theoretical basis in evaluating the stability of ground anchors in practice.


2015 ◽  
Vol 15 (07) ◽  
pp. 1540020 ◽  
Author(s):  
Michael Krommer ◽  
Hans Irschik

In the present paper, the geometrically nonlinear behavior of piezoelastic thin plates is studied. First, the governing equations for the electromechanically coupled problem are derived based on the von Karman–Tsien kinematic assumption. Here, the Berger approximation is extended to the coupled piezoelastic problem. The general equations are then reduced to a single nonlinear partial differential equation for the special case of simply supported polygonal edges. The nonlinear equations are approximated by using a problem-oriented Ritz Ansatz in combination with a Galerkin procedure. Based on the resulting equations the buckling and post-buckling behavior of a polygonal simply supported plate is studied in a nondimensional form, where the special geometry of the polygonal plate enters via the eigenvalues of a Helmholtz problem with Dirichlet boundary conditions. Single term as well as multi-term solutions are discussed including the effects of piezoelectric actuation and transverse force loadings upon the solution. Novel results concerning the buckling, snap through and snap buckling behavior are presented.


1994 ◽  
Vol 116 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Horng-Tsann Huang ◽  
Cheng-I Weng ◽  
Chao-Kuang Chen

A multifacet drill (MFD), developed around 1953, has been used to improve the drilling performance by modifying the drill point geometry. A theoretical method for predicting the thrust and torque for an MFD is developed on the basis of the cutting mechanics for a conventional drill. Experiments show the proposed model is quite satisfactory for a wide range of applications. Also, from the analytical model the effects of the major features of the drill point geometry on thrust and torque can be studied.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 328 ◽  
Author(s):  
Haonan Tian ◽  
Zhongbao Wei ◽  
Sriram Vaisambhayana ◽  
Madasamy Thevar ◽  
Anshuman Tripathi ◽  
...  

Medium-frequency (MF) transformer has gained much popularity in power conversion systems. Temperature control is a paramount concern, as the unexpected high temperature declines the safety and life expectancy of transformer. The scrutiny of losses and thermal-fluid behavior are thereby critical for the design of MF transformers. This paper proposes a coupled, semi-numerical model for electromagnetic and thermal-fluid analysis of MF oil natural air natural (ONAN) transformer. An analytical model that is based on spatial distribution of flux density and AC factor is exploited to calculate the system losses, while the thermal-hydraulic behavior is modelled numerically leveraging the computational fluid dynamics (CFD) method. A close-loop iterative framework is formulated by coupling the analytical model-based electromagnetic analysis and CFD-based thermal-fluid analysis to address the temperature dependence. Experiments are performed on two transformer prototypes with different conductor types and physical geometries for validation purpose. Results suggest that the proposed model can accurately model the AC effects, losses, and the temperature rises at different system components. The proposed model is computationally more efficient than the full numerical method but it reserves accurate thermal-hydraulic characterization, thus it is promising for engineering utilization.


Sign in / Sign up

Export Citation Format

Share Document