A MICROSTRUCTURE-BASED MECHANISTIC MODEL FOR BONE SAWING: PART 1- CUTTING FORCE PREDICTIONS

Author(s):  
Michael Conward ◽  
Johnson Samuel

Abstract This two-part paper is aimed at developing a microstructure-based mechanistic modeling framework to predict the cutting forces and acoustic emissions generated during bone sawing. The modeling framework is aimed at the sub-radius cutting condition that dominates chip-formation mechanics during the bone sawing process. Part-1 of this paper deals specifically with the sawing experiments and modeling of the cutting/thrust forces. The model explicitly accounts for key microstructural constituents of the bovine bone (viz., osteon, interstitial matrix, lamellar bone, and woven bone). The cutting and thrust forces are decomposed into their shearing and ploughing components. Microstructure-specific shear stress values critical to the model calculations are estimated using micro-scale orthogonal cutting tests. This approach of estimating the microstructure-specific shear stress overcomes a critical shortcoming in the literature related to high-strain rate characterization of natural composites, where the separation of the individual constituents is difficult. The six model coefficients are calibrated over a range of clinically relevant depth-of-cuts using pure haversian regions (comprising of osteon and interstitial matrix), and pure plexiform regions (comprising of lamellar bone and woven bone). The calibrated model is then used to make predictions in the transition region between the haversian and plexiform bone, which is characterized by gradient structures involving varying percentages of osteon, interstitial matrix, lamellar bone, and woven bone. The mean absolute percentage error in the force predictions is under 10 % for both the cutting and thrust forces.

2019 ◽  
Vol 12 (6) ◽  
pp. 809-816
Author(s):  
Aminatun Aminatun ◽  
D.E. Fadhilah Handayani ◽  
Prihartini Widiyanti ◽  
Dwi Winarni ◽  
Siswanto Siswanto

Background: Hydroxyapatite (HA) from bovine bone has been widely used as bone filler in many fractures cases. HA can also be made from cuttlefish bone (Sepia spp.) that has abundant availability in Indonesia and contains 84% CaCO3, which is a basic ingredient of HA. However, research on the effects of HA from cuttlefish bone on bone regeneration parameters has not been done yet. Aim: This study aimed to determine femur bone regeneration of white rats (Rattus norvegicus) through the use of HA from cuttlefish bone (Sepia spp.) as bone filler. Materials and Methods: HA was made using the hydrothermal method by mixing 1M aragonite (CaCO3) from cuttlefish bone and 0.6 M NH4H2PO4 at 200°C for 12 h followed by sintering at 900°C for 1 h. In vivo test was carried out in three groups, including control group, bovine bone-derived HA group, and cuttlefish bone-derived HA group. The generation of femur bone was observed through the number of osteoblasts, osteoclasts, woven bone, lamellar bone, havers system, and repair bone through anatomical pathology test for 28 days and 56 days. Results: Anatomical pathology test results are showed that administration of bovine bone-derived HA and cuttlefish bone-derived HA increased the number of osteoblasts, osteoclasts, woven bone, lamellar bone, havers system, and bone repair at recuperation of 56 days. Statistical test using Statistical Package for the Social Sciences with Kruskal–Wallis and Mann–Whitney U-test was resulted in significant differences between the bovine bone-derived HA control group and the cuttlefish-derived HA control group. There was no significant difference toward the indication of bone formation through the growth of osteoblasts, osteoclasts, woven bone, lamellar bone, havers system, and bone repair in the bovine bone-derived HA and cuttlefish bone-derived HA groups. Conclusion: It can be concluded that cuttlefish bone-derived HA has the potential as bone filler based on the characteristics of bone regeneration through in vivo test.


Author(s):  
Naresh Kumar Maroju ◽  
Xiaoliang Jin

Abstract Bulk metallic glasses (BMGs) are a series of metal alloys with an amorphous structure. The deformation of BMGs occurs in localized regions and is highly sensitive to the applied stress, strain rate, and temperature. This paper presents a coupled thermomechanical model to analyze the chip segmentation mechanism due to material shear localization in orthogonal cutting of Zr-BMG. The shear stress variation in the primary shear zone is modeled considering the tool-chip friction and large strain of the material. The constitutive property of BMG corresponding to the inhomogeneous deformation through shear transformation zones is modeled. The oscillations of shear stress, temperature, and free volume are simulated based on the cutting conditions. The predicted chip segmentation frequency is compared with the experimental result under different cutting speeds and uncut chip thicknesses. The developed model provides the fundamental mechanism of material deformation and chip formation in cutting Zr-BMG with an amorphous structure.


2020 ◽  
Vol 206 ◽  
pp. 02021
Author(s):  
Yanchun Ding ◽  
Guangfeng Shi

With the rapid development of the precision grinding and micro-cutting technology, scholars have become more and more interested in the forming mechanism and related characteristics of the rounded-edge tool and the negative rake angle tool. Based on DEFORM-2D forming software, this paper investigates the edge effect of the negative rake angle tool in micro-cutting condition. Through the simulation comparison analysis, it is clear that three deformation regions appear in front of the tool surface, namely the first shear-slip region, the second tool-material contact friction region and the third edge effect deformation region when the negative rake tool cuts the plastic metal material-C10100 with a large edge radius. And a triangle stagnant region appears in front of the tool surface due to the edge effect. By analysing the influence of the ratio of the edge radius to the cutting thickness on the mechanism of orthogonal cutting of negative rake tools, it is found that the minimum cutting thickness value is between


AIChE Journal ◽  
2017 ◽  
Vol 63 (11) ◽  
pp. 5029-5043 ◽  
Author(s):  
Austin P. Ladshaw ◽  
Sotira Yiacoumi ◽  
Ronghong Lin ◽  
Yue Nan ◽  
Lawrence L. Tavlarides ◽  
...  

Author(s):  
Farid Miah ◽  
Emmanuel De-Luycker ◽  
Frederic Lachaud ◽  
Yann Landon ◽  
Robert Piquet

The necessity of understanding the influence of cutting variables in orthogonal cutting of Carbon Fiber Reinforced Polymer (CFRP) is vital because of their significant influences to the quality of manufactured parts. In this present research work the influences of different cutting depths to the cutting and thrust forces have been analyzed and a comparison between an equivalent homogeneous material (EHM) macro-model and experimental results have been made. The reasons of the beginning high cutting and thrust forces have been studied and explained. The post analysis of the experimental machined surfaces has been done to analyze the generated surface roughness and fiber-matrix interface crack generation. Five different cutting depths and four individual fiber orientations have been tested both numerically and experimentally. Significant influence of cutting depths to the cutting force has been found and the surface quality of newly generated machined part is discovered as a function of cutting depth and fiber orientation.


Author(s):  
Anna Niarakis ◽  
Tomáš Helikar

Abstract Mechanistic computational models enable the study of regulatory mechanisms implicated in various biological processes. These models provide a means to analyze the dynamics of the systems they describe, and to study and interrogate their properties, and provide insights about the emerging behavior of the system in the presence of single or combined perturbations. Aimed at those who are new to computational modeling, we present here a practical hands-on protocol breaking down the process of mechanistic modeling of biological systems in a succession of precise steps. The protocol provides a framework that includes defining the model scope, choosing validation criteria, selecting the appropriate modeling approach, constructing a model and simulating the model. To ensure broad accessibility of the protocol, we use a logical modeling framework, which presents a lower mathematical barrier of entry, and two easy-to-use and popular modeling software tools: Cell Collective and GINsim. The complete modeling workflow is applied to a well-studied and familiar biological process—the lac operon regulatory system. The protocol can be completed by users with little to no prior computational modeling experience approximately within 3 h.


1980 ◽  
Vol 9 (3) ◽  
pp. 137-142
Author(s):  
J K Davis ◽  
C J Jackson ◽  
I Scott

The work described in this paper was carried out in two parts. The first part consisted of evaluating the machining constants and the dynamic shear flow strengths of bovine bone from orthogonal cutting and drilling tests. The second part of the work arose from investigation into the thermal effects of drilling human bone during which certain trends were observed when comparing feed rate and point angle for fixed values of thrust. Some measure of agreement was found between these two independent pieces of work. Bera and Bhattacharrya's analytical equation for the thrust produced when drilling metals has been modified for anisotropic materials such as bone.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1257 ◽  
Author(s):  
Brian Wingender ◽  
Yongliang Ni ◽  
Yifan Zhang ◽  
Curtis Taylor ◽  
Laurie Gower

The hierarchical structure of bone and intrinsic material properties of its two primary constituents, carbonated apatite and fibrillar collagen, when being synergistically organized into an interpenetrating hard-soft composite, contribute to its excellent mechanical properties. Lamellar bone is the predominant structural motif in mammalian hard tissues; therefore, we believe the fabrication of a collagen/apatite composite with a hierarchical structure that emulates bone, consisting of a dense lamellar microstructure and a mineralized collagen fibril nanostructure, is an important first step toward the goal of regenerative bone tissue engineering. In this work, we exploit the liquid crystalline properties of collagen to fabricate dense matrices that assemble with cholesteric organization. The matrices were crosslinked via carbodiimide chemistry to improve mechanical properties, and are subsequently mineralized via the polymer-induced liquid-precursor (PILP) process to promote intrafibrillar mineralization. Neither the crosslinking procedure nor the mineralization affected the cholesteric collagen microstructures; notably, there was a positive trend toward higher stiffness with increasing crosslink density when measured by cantilever-based atomic force microscopy (AFM) nanoindentation. In the dry state, the average moduli of moderately (X51; 4.8 ± 4.3 GPa) and highly (X76; 7.8 ± 6.7 GPa) crosslinked PILP-mineralized liquid crystalline collagen (LCC) scaffolds were higher than the average modulus of bovine bone (5.5 ± 5.6 GPa).


1995 ◽  
Vol 117 (4) ◽  
pp. 526-533 ◽  
Author(s):  
W. J. Endres ◽  
R. E. DeVor ◽  
S. G. Kapoor

A cutting-process model addressing the chip removal and edge ploughing mechanisms separately yet simultaneously is presented. The model is developed such that it is readily applicable in an industrial setting, its coefficients have physical meaning, and it can be calibrated with a concise quantity of orthogonal cutting data. The total cutting and thrust forces are each the summation of its individual components acting on the rake face and clearance face. These components are calculated using the rake and effective clearance angles from the normal and friction forces acting on each of these tool surfaces. These normal and friction forces are calculated by the chip removal and edge ploughing portions of the model, respectively, using four empirical coefficients. To calculate the clearance face forces, the interference volume is required, the calculation of which is based on a geometrical representation of the clearance face interference region. This representation is characterized in part by the depth of tool penetration, which is influenced by thermal energy generation and is therefore determined using a fifth empirical model.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 409 ◽  
Author(s):  
Ashley Teufel ◽  
Andrew Ritchie ◽  
Claus Wilke ◽  
David Liberles

When mutational pressure is weak, the generative process of protein evolution involves explicit probabilities of mutations of different types coupled to their conditional probabilities of fixation dependent on selection. Establishing this mechanistic modeling framework for the detection of selection has been a goal in the field of molecular evolution. Building on a mathematical framework proposed more than a decade ago, numerous methods have been introduced in an attempt to detect and measure selection on protein sequences. In this review, we discuss the structure of the original model, subsequent advances, and the series of assumptions that these models operate under.


Sign in / Sign up

Export Citation Format

Share Document