Investigation on the Characteristics of a New Structure Brake Distribution Valve

Author(s):  
Yuqi Wang ◽  
Xinhui Liu ◽  
Jinshi Chen ◽  
Yafang Han

Abstract Brake distribution valve is an important part of aircraft hydraulic systems. TO realize the integra-tion and lightweight design of conventional structure valves, this paper proposed a new type brake distribution valve that uses new structure of pressure reducing unit, overflow unit and embedded shuttle valve instead of the conventional valve structure. The new structure de-creases the weight and volume of the valve; reduces the influence of non-work zone and damping on valve performance; improves the control precision and dynamic performance of the brake distribution valve. Both of numerical simulation and model verification experiments of the entire valve demonstrate that the dynamic performance of the new type valve has been significantly improved on the premise of ensuring linear characteristics. The results of simula-tion show that the response time of the new structure valve is 33% shorter than that of the conventional structure valve in case of step response simulation; in case of sinusoidal re-sponse simulation, the tracking error of the valve reduces by nearly 5%.

Author(s):  
Saeed Hashemi ◽  
Steven Sobojinski ◽  
William K. Durfee

Hydraulic cylinders are the most common actuators for small, passive hydraulic systems. Friction and leakage of the actuators are the most crucial factors for force and volume efficiency. Development of a frictionless and leak-free cylinder would enable implementation of a passive human body controlled device. Due to the limitation of short stroke length in commercial rolling diaphragm (RD) cylinders, a novel fabric-elastomer long-stroke rolling diaphragm (LSRD) cylinder was developed, evaluated, and compared to the commercial rolling diaphragm, O-ring, and gap seal cylinders. The LSRD cylinder has low friction, zero leakage, and can operate at up to 700 kPa (100 psi). The performance of the LSRD cylinders was evaluated using an antagonist hydraulic transmission benchtop device. Axial motion of the LSRD cylinders was converted to a rotary motion on the input and output shafts using timing belts and pulleys. Two LSRD cylinders were engaged on each shaft and two lever arms were used to control the transmission device. A rotation of 90 degrees was achieved using LSRD cylinders with 1.5-inch stroke length. Friction, stiffness, tracking, impulse response, and step response tests were performed at 70, 170, and 275 kPa (10, 25, and 40 psi) preload pressures to evaluate the transmission device and LSRD cylinder dynamic performance. The results demonstrated that at least 275 kPa preload pressure is needed to have a satisfactory performance. The passive antagonist hydraulic transmission can be used in applications such as wearable robots and telepresence devices.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


2012 ◽  
Vol 466-467 ◽  
pp. 809-813
Author(s):  
Zhan Jun Yuan ◽  
Jin Wang

In order to improve voltage utilization ratio and dynamic performance of frequency converter, this paper presents a digital frequency converter design scheme based on digital signal processor TMS320LF2407A and the theory of space vector pulse width modulation (SVPWM) technology, provides its detailed design measures of software and hardware and SVPWM algorithm realization methods. The experimental results prove that this new frequency converter has simple structure, high control precision, higher voltage utilization ratio, better dynamic and static property.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhi Wang ◽  
Yateng Bai ◽  
Jin Xie ◽  
Zhijie Li ◽  
Caoyuan Ma ◽  
...  

In order to overcome disturbances such as the instability of internal parameters or the actuator fault, the time-varying proportional-integral sliding-mode surface is defined for coordinated control of the excitation generator and the steam valve of waste heat power generation units, and a controller based on sliding-mode function is designed which makes the system stable for a limited time and gives it good performance. Based on this, a corresponding fault estimation law is designed for specific faults of systems, and a sliding-mode fault-tolerant controller is constructed based on the fixed-time control theory so that the systems can still operate stably when an actuator fault occurs and have acceptable performance. The simulation results show that the tracking error asymptotically tends to be zero, and the fixed-time sliding-mode fault-tolerant controller can obviously improve the dynamic performance of the system.


2013 ◽  
Vol 380-384 ◽  
pp. 294-297 ◽  
Author(s):  
Xin Wei Li

A temperature rising control system and temperature maintaining control system were designed in according to time-variable and hysteretic nature of temperature change and limitation when traditional PID control deals with nonlinear systems. A new type of intelligent fuzzy controller combination of traditional PID control and fuzzy control was designed and applied in temperature maintaining control system. The simulation results show that the holding phase at elevated temperatures and temperature, the temperature curve has a high steady-state accuracy and dynamic performance in the period of temperature rising and maintaining, and the system and controller cause a better result.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 292 ◽  
Author(s):  
Damiano Padovani ◽  
Søren Ketelsen ◽  
Daniel Hagen ◽  
Lasse Schmidt

Self-contained electro-hydraulic cylinders have the potential to replace both conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency, plug-and-play installation, and reduced maintenance. Current commercial solutions of this technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost efficiency and power applications below five [kW]. Therefore, there is the need of developing more flexible systems adaptable to multiple applications. This research paper offers a contribution in this regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding capability, sealed tank, capable of recovering energy, and scalable up to about eighty [kW]. The system implementation on a single-boom crane confirms its feasibility: The position tracking error remains well within ±2 [mm], oscillations are limited, and the overall energy efficiency is about 60 [%] during actuation. Concerning the passive load-holding devices, it is shown that both vented and non-vented pilot-operated check valves achieve the desired functioning and can hold the actuator position without consuming energy. Additional observations about the size and the arrangement of the load-holding valves are also provided. In conclusion, this paper demonstrates that the proposed self-contained cylinder can be successfully extended to several practical applications, especially to those characterized by overrunning external loads and the need of securing the actuator position.


2012 ◽  
Vol 220-223 ◽  
pp. 1077-1083 ◽  
Author(s):  
Li Ru Zhao ◽  
Xiao Zhang Zhang ◽  
Kai Zhang ◽  
Tong Zhang

Operation of neutron bandwidth limiting chopper requires high controlling precision. Phase difference between the chopper rotor and the synchronous pulse signal should be maintained to be fixed. Rotating frequency of the rotor needs to be very stable. To achieve the above technical requirements, control scheme, dynamic balance, and other means are made. Thus influences to control accuracy are effectively reduced, which are from rotor asymmetry and neutron absorbing materials. In the case described in this paper, phase tracking error was controlled under ±0.10752°with 90% confidence for the designed chopper.


Author(s):  
Chia-Hua Lu ◽  
Yean-Ren Hwang ◽  
Yu-Ta Shen ◽  
Tzu-Yu Wang

Air motors have often been utilized in industrial servo systems in the automation industry due to their advantages such as small volume, low cost, light weight, convenience of operation, and no overheating problems. Recently, the development of control technology has improved, making the requirements for control precision higher than ever before. Accurate control performance in pneumatic systems is facilitated by the implementation of nonlinear control techniques. The purpose of this study is to analyze the behavior of a biaxial pneumatic table motion system with a vane-type air motor, and to design a backstepping sliding mode controller for this system. A proportional integral derivative controller compared with this new backstepping design. The tracking circle error and tracking error of the two axes are noted. The experimental results show that accurate tracking circle trajectory performance can be achieved with the proposed controller.


Author(s):  
Ali Hajary ◽  
Seyed Ghodratollah Seifossadat ◽  
Reza Kianinezhad ◽  
Alireza Saffarian ◽  
Seyed Saeedollah Mortazavi

Purpose This paper aims to present a novel robust control method based on an adaptive PI controller (APIC) to compensate for different disturbances and unknown dynamics for multi-phase induction machines. Design/methodology/approach The gains of the APIC are adapted online according to the tracking error. Proposed APIC is accompanied with designed linear disturbance observer (LDO) to present robust behavior to machine parameter variations and fault disturbances. Findings The results show remarkable dynamic performance in both healthy and faulty conditions when the six-phase induction machine works under APIC and LDO schemes. Originality/value The proposed controller need not readjust current controllers for the post-fault condition. The developed Simulink model efficiency is confirmed through experimental tests.


2020 ◽  
pp. 002029402094495
Author(s):  
Zhiqiang Xu ◽  
Zhiyong Wang ◽  
Zhixin Shen ◽  
Yougang Sun

Ship-borne manipulator system is extremely unstable under the complex marine environment, which seriously threatens the safety of operating equipment and operators. In this paper, the dynamics and robust control of wave compensation system for ship-borne manipulator are studied. First, based on the oil circuit variable amplitude control of ship-borne manipulator, the coupling dynamic model of valve-controlled cylinder parallel accumulator is established. Then, since traditional sliding mode needs high-order derivative of feedback angle, it is difficult to implement traditional sliding mode in real hardware system. To solve these problems, a nonlinear differential and integral sliding mode control strategy is proposed. The integral term is introduced to reduce the influence of unmodeled disturbance and parameter perturbation. The stability analysis proves that the system state can track the desired target signal, and the tracking error e( t) tends to zero. In addition, in order to weaken the phenomenon of system chattering, this paper introduces a nonlinear differential control to increase the damping coefficient of the system. The simulation and experimental results show that the control law has good dynamic performance, high control accuracy, and strong anti-disturbance ability without chattering phenomenon. It is of great significance to improve the efficiency and safety of ship-borne manipulator operation, and this paper also provides useful reference for wave compensation system of other marine equipment.


Sign in / Sign up

Export Citation Format

Share Document