scholarly journals A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 292 ◽  
Author(s):  
Damiano Padovani ◽  
Søren Ketelsen ◽  
Daniel Hagen ◽  
Lasse Schmidt

Self-contained electro-hydraulic cylinders have the potential to replace both conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency, plug-and-play installation, and reduced maintenance. Current commercial solutions of this technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost efficiency and power applications below five [kW]. Therefore, there is the need of developing more flexible systems adaptable to multiple applications. This research paper offers a contribution in this regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding capability, sealed tank, capable of recovering energy, and scalable up to about eighty [kW]. The system implementation on a single-boom crane confirms its feasibility: The position tracking error remains well within ±2 [mm], oscillations are limited, and the overall energy efficiency is about 60 [%] during actuation. Concerning the passive load-holding devices, it is shown that both vented and non-vented pilot-operated check valves achieve the desired functioning and can hold the actuator position without consuming energy. Additional observations about the size and the arrangement of the load-holding valves are also provided. In conclusion, this paper demonstrates that the proposed self-contained cylinder can be successfully extended to several practical applications, especially to those characterized by overrunning external loads and the need of securing the actuator position.

Author(s):  
Lin Li ◽  
Yixiang Huang ◽  
Jianfeng Tao ◽  
Chengliang Liu

Monitoring for internal leakage of hydraulic cylinders is vital to maintain the efficiency and safety of hydraulic systems. An intelligent classifier is proposed to automatically evaluate internal leakage levels based on the newly extracted features and random forest algorithm. The inlet and outlet pressures as well as the pressure differences of two chambers are chosen as the monitoring parameters for leakage identification. The empirical mode decomposition method is used to decompose the raw pressure signals into a series of intrinsic mode functions to obtain the essence in experimental signals. Then, the features extracted from intrinsic mode functions in terms of statistical analysis are formed the input vector to train the leakage detector. The classifier based on random forest is established to categorize internal leakage into proper levels. The accuracy of the internal leakage evaluator is verified by the experimental pressure signals. Moreover, an internal leakage evaluator is established based on the support vector machine algorithm, in which the wavelet transform is applied for feature extraction. The accuracy and efficiency of different classifiers are compared based on leakage experiments. The results show that the classifier trained by the intrinsic mode function features in terms of random forest algorithm may more effectively and accurately identify internal leakage levels of hydraulic cylinders. The leakage evaluator provides probability for online monitoring of the internal leakage of hydraulic cylinders based on the inherent sensors.


Author(s):  
Jicheng Xia ◽  
William K. Durfee

To enable simulation of tiny hydraulic systems, including predicting system efficiency, it is necessary to determine the effect of the hydraulic cylinder piston seal. For tiny cylinders whose bore is less than 10 mm, O-ring seals are convenient. Simplified models for the O-ring were used to describe piston leakage and friction and based on the models, the force and volumetric efficiencies for tiny cylinders were predicted for a range of steady state operating conditions. To validate the models, a test stand was constructed to collect experimental data for 4, 6 and 9 mm bore cylinders, which were in the form of a vertical ram with a single O-ring seal. The ram was fully extended and put under load. A needle valve was then cracked to cause the ram to descend at different speeds. Pressure, load and velocity were recorded and the data used to calculate cylinder efficiencies, which were then compared to model predictions. The model and the experiment showed essentially zero leakage. The experimental force efficiency had good agreement with the model over a range of operating conditions. The study showed that simple O-ring models for tiny hydraulic cylinders suffice for building system level simulation models.


2018 ◽  
Vol 25 (4) ◽  
pp. 114-128 ◽  
Author(s):  
Grzegorz Skorek

Abstract Energy efficiency of hydrostatic transmissions, and especially efficiencies of drives with motor speed controlled by throttle, as well as efficiency of hydraulic servomechanisms can in fact be higher than the efficiency values most frequently given by the respective literature in this field. With the progress achieved in recent years in the development of hydraulic systems it is becoming necessary to develop methods for precise energy efficiency calculation of such systems. It is difficult to imagine that more and more, better and better machines and control elements could be used without the possibility of a mathematical tool at our disposal to enable an accurate analysis and assessment of behavior of the system in which such machines and control elements have been applied. The paper discusses energy savings using mathematical model of losses in elements, the energy efficiency of the system. There are possibilities to reduce energy losses in proportional control systems (in the pump, in the throttle control unit, especially in the cylinder), and thus to improve the energy efficiency of the throttling manifold. The considerations allow for comparison of the loss power resulting from the applied hydraulic control structure of the hydraulic cylinder and the power consumed by the pump from the electric motor that drives it, the power necessary to provide pump-driven hydraulic cylinder. The article shows the impact on the output (useful) power consumed in the considered systems, and the impact on the power consumed of the loss power in the individual elements. The paper presents also formulas of loss power, formulas of energy efficiency connected with investigated hydrostatic drives, two schematic diagrams of hydraulic systems, their principle of operation and problems of studying losses in elements and energy efficiency characteristics of systems consisting of a feed assembly, control set and cylinder. It also includes a subject matter connected with an energy loss power of hydrostatic systems with hydraulic cylinder controlled by proportional directional control valve. Diagrams of loss power of two hydraulic systems worked at the same parameters of speed and load of a cylinder, which were different due to structure and ability of energy saving, were presented and compared.


Author(s):  
Andrzej Kosucki ◽  
Łukasz Stawiński ◽  
Adrian Morawiec ◽  
Jarosław Goszczak

Hydraulic systems fed by fixed displacement pumps driven by frequency-controlled electric motors can replace conventional throttling systems due to their ability to control the speed of hydraulic cylinders regardless of the value and direction of the load. These systems can improve the energy efficiency of the drive or even provide the possibility of energy recuperation during lowering. This paper presents experimental studies of the new drive system with volumetric control of the speed of the lifted/lowered payload using the example of a scissor lift. The system uses a reversible gear pump driven by an asynchronous motor fed by a frequency inverter operating in field-oriented control mode. Comparative studies of the mapping of the assumed speed of the hydraulic cylinder and platform are presented, as well as studies of the influence of the load change on the speed and positioning of the mechanism driven by the open-loop controlled system.


Author(s):  
Søren Ketelsen ◽  
Torben Ole Andersen ◽  
Morten Kjeld Ebbesen ◽  
Lasse Schmidt

Abstract Self-contained linear hydraulic drives are characterized by having integrated the hydraulic power unit e.g. electrical prime mover, hydraulic pumps etc. and the hydraulic cylinder in a single compact unit. Compared to the hydraulic cylinder itself, the mass of the self-contained linear actuator is significantly larger. For some applications, e.g. crane manipulators the additional mass of the actuators compared to conventional valve-controlled hydraulics, may reduce the payload capacity, which is a central performance parameter. As a case study, a medium sized two link knuckle boom crane is modelled and by assuming the force capability of the hydraulic cylinders to be the limiting factor, the reduction in payload capacity is examined if replacing the knuckle boom cylinder with a self-contained hydraulic cylinder drive. By focusing on seven different hydraulic circuit architectures, this study estimates the mass of compact pump-controlled actuators and investigates to what extent the choice of system topology affects the mass of the actuator, and thus payload capacity of the crane. The results show that the choice of hydraulic circuit architecture may affect both the required amount of installed power and the mass of the self-contained actuator. For the considered knuckle boom crane the estimated mass of the needed 59 kW self-contained actuator ranges from 2300 kg to 2521 kg depending on the hydraulic circuit architecture. The mass of the hydraulic cylinder itself used for conventional valve actuation is estimated to 1674 kg. If the entire working range is considered, installing the heavier self-contained actuator reduces the payload capacity with up to 3 % compared to conventional valve actuation.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 648
Author(s):  
Elizabeth Hewitt

In addition to formalized leadership roles within organizations, leadership can also influence members through informal channels. This work argues that multifamily residential buildings can be viewed as organizations and, as such, explores the influence that informal leaders can wield in shaping culture around the motivation for conserving energy. This work draws on qualitative fieldwork conducted in a Brooklyn cooperative building. Findings indicate that the study building benefitted from the leadership of a long-standing board member, which contributed to the implementation of a number of energy efficiency initiatives. Interestingly, this leadership also led to a culture of cost efficiency over environmental concern as the motivating force behind these initiatives. This narrative was well disseminated, with most residents reporting that the building does not have a culture of conservation, despite a strong energy efficiency leaning. Thus, this work posits that leadership can greatly shape perception and culture around energy but can also be leveraged to craft a more environmentally-motivated conservation culture. It also argues that leadership can be complementary to decentralized organizational structures, and that creative mechanisms in residential buildings can capitalize on both, allowing members at all levels of the organization more influence in shaping the building’s culture.


2012 ◽  
Vol 220-223 ◽  
pp. 1012-1017
Author(s):  
Qing Guo ◽  
Dan Jiang

This paper has introduced electromechanical coupling characteristics in the lower extremity exoskeleton systems, considered model ,according to legs supporting gait when people walking, established the load torque compensation model , and a mathematical model of knee position control system which is made of the servo valve, hydraulic cylinders and other hydraulic components, designed hydraulic cylinder position control loop in case of existing load force interference compensation, and used the method of combining the PID and lead correction network for frequency domain design ,ensured system to meet a certain stability margin. The simulation results show that this position control method can servo on the knee angular displacement of normal human walking, reached a certain exoskeleton boost effect, at the same time, met the needs of human-machine coordinated motion.


2021 ◽  
pp. 41-45
Author(s):  

The hydraulic drive of a construction machine is a complex dynamic system that is subjected to many dynamic loads of a variable nature and operates under conditions of variable external influences caused by various factors. During operation, these loads cause failure of the hydraulic transmission elements. To prevent these malfunctions, technical diagnostics should be applied by determining their current technical condition and remaining service life. The article assesses the working condition of hydraulic cylinders using a mathematical model. Using matlab/simulink software to simulate the hydraulic cylinder and hydraulic piston speed when changing the hydraulic cylinder clearance. The simulation results are presented. Keywords: diagnostic, hydraulic cylinder, simulation, development


Author(s):  
Robert Seifried ◽  
Alexander Held

In many machine and robotic applications energy efficiency is an increasingly crucial issue. In order to achieve energy efficiency lightweight structural designs are necessary. However, undesired elastic deformations might occur due to the light wight design. In order to achieve good system performance the actual dynamic loads must be taken into account in the design of the system’s components. In this paper optimization approaches for lightweight machine designs are employed to improve the tracking behavior the systems. Thereby, fully dynamical simulations of flexible multibody systems are coupled with both shape or topology optimization for the elastic members of the multibody system. It is shown, that by these approaches the end-effector trajectory tracking error of light wight manipulators can be decreased significantly.


Author(s):  
Shinichiro Kajii ◽  
Naoki Sawa ◽  
Nobuhiro Kunitake ◽  
K. Umeki

A three-dimensional (3D) seismic isolation system for FBR building is under development. The proposed vertical isolation system consists form hydraulic cylinders with water-based liquid and accumulators to support large vertical static load and to realize low natural frequency in the vertical direction. For horizontal isolation, laminated rubber isolator or sliding type isolator will be combined. Because the major part of the feasibility of this isolation system depends on the sealing function and durability of the hydraulic cylinder, a series of feasibility tests of the hydraulic cylinder have been conducted to verify the reliability against seismic load and seismic motion. This paper describes the specification of the seismic isolations system, seismic response characteristics and the results of the feasibility tests of the seal. This study was performed as part of a government sponsored R&D project on 3D seismic isolation.


Sign in / Sign up

Export Citation Format

Share Document