Kinematic Design of Functional Nanoscale Mechanisms From Molecular Primitives

Author(s):  
Meysam T. Chorsi ◽  
Pouya Tavousi ◽  
Caitlyn Mundrane ◽  
Vitaliy Gorbatyuk ◽  
Kazem Kazerounian ◽  
...  

Abstract Natural nanomechanisms such as capillaries, neurotransmitters, and ion channels play a vital role in the living systems. But the design principles developed by nature through evolution are not well understood and, hence, not applicable to engineered nanomachines. Thus, the design of nanoscale mechanisms with prescribed functions remains a challenge. Here, we present a systematic approach based on established kinematics techniques to designing, analyzing, and controlling manufacturable nanomachines with prescribed mobility and function built from a finite but extendable number of available "molecular primitives." Our framework allows the systematic exploration of the design space of irreducibly simple nanomachines, built with prescribed motion specification by combining available nanocomponents into systems having constrained, and consequently controllable motions. We show that the proposed framework has allowed us to discover and verify a molecule in the form of a seven link, seven revolute (7R) close loop spatial linkage with mobility (degree of freedom) of one. Furthermore, our experiments exhibit the type and range of motion predicted by our simulations. Enhancing such a structure into functional nanomechanisms by exploiting and controlling their motions individually or as part of an ensemble could galvanize development of the multitude of engineering, scientific, medical, and consumer applications that can benefit from engineered nanomachines.

Author(s):  
Pouya Tavousi ◽  
Meysam T. Chorsi ◽  
Caitlyn Mundrane ◽  
Vitaliy Gorbatyuk ◽  
Kazem Kazerounian ◽  
...  

Abstract Natural nanomechanisms such as capillaries, neurotransmitters, and ion channels play a vital role in the living systems. But the design principles developed by nature through evolution are not well understood and, hence, not applicable to engineered nanomachines. Thus, the design of nanoscale mechanisms with prescribed functions remains a challenge. Here, we present a systematic approach based on established kinematics techniques to designing, analyzing, and controlling manufacturable nanomachines with prescribed mobility and function built from a finite but extendable number of available “molecular primitives.” Our framework allows the systematic exploration of the design space of irreducibly simple nanomachines, built with prescribed motion specification by combining available nanocomponents into systems having constrained, and consequently controllable motions. We show that the proposed framework has allowed us to discover and verify a molecule in the form of a seven link, seven revolute (7R) close loop spatial linkage with mobility (degree of freedom) of one. Furthermore, our experiments exhibit the type and range of motion predicted by our simulations. Enhancing such a structure into functional nanomechanisms by exploiting and controlling their motions individually or as part of an ensemble could galvanize development of the multitude of engineering, scientific, medical, and consumer applications that can benefit from engineered nanomachines.


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


The review article discusses the possibilities of using fractal mathematical analysis to solve scientific and applied problems of modern biology and medicine. The authors show that only such an approach, related to the section of nonlinear mechanics, allows quantifying the chaotic component of the structure and function of living systems, that is a priori important additional information and expands, in particular, the possibilities of diagnostics, differential diagnosis and prediction of the course of physiological and pathological processes. A number of examples demonstrate the specific advantages of using fractal analysis for these purposes. The conclusion can be made that the expanded use of fractal analysis methods in the research work of medical and biological specialists is promising.


2020 ◽  
Vol 62 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Agnieszka Maruszewska ◽  
Lech Panasiuk ◽  
Agnieszka Buczaj ◽  
Anna Pecyna

Introduction: Arthrosis is considered as a disease of the whole locomotor system, which may be prevented and treated at early stages. Gonarthrosis develops gradually within 10-15 years, interfering with daily activities and capability for work. Aquatic exercises are considered as a potentially effective therapeutic intervention in persons with knee arthrosis. Aim: Assessment of the effectiveness of a 4-week aquatic treadmill exercise programme, with respect to the measurement of pain, balance, function, and mobility. Materials and Methods: The study covered 15 patients with gonarthrosis, using a 4-week cycle of exercises. The results of measurements included a visual-analogue scale for assessing pain, Time Up and Go (TUG) for balance, 6-meter walk test for mobility and Lequesne index for function. The exercise protocol covered an aquatic treadmill using water jets to destabilize while standing, and achieve high ratings of perceived exertion during walking. Results: The comparison of results obtained by the patients after 20 interventions, with those obtained before therapy allowing the presumption that on the level of significance α= 0.05 there occurred statistically significant differences in the results of the tests performed (p<0.05). This concerned both pain complaints (VAS scale, Lequesne index of severity for arthrosis of the knee), as well as functional tests TUG, and measurement of the range of motion (p = 0.041-0.001). Conclusions: Based on the results of the study a decrease was observed in pain complaints, improvement of the range of motion in the joints, balance and function, after participation in a 4-week aquatic treadmill exercise programme, which contained the components of balance and endurance training.


2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.


1989 ◽  
Vol 111 (2) ◽  
pp. 202-207 ◽  
Author(s):  
C. Gosselin ◽  
J. Angeles

In this paper, the design of a spherical three-degree-of-freedom parallel manipulator is considered from a kinematic viewpoint. Three different design criteria are established and used to produce designs having optimum characteristics. These criteria are (a) symmetry (b) workspace maximization, and (c) isotropy. The associated problems are formulated and their solutions, one of them requiring to resort to a numerical method, are provided. Optimum designs are thereby obtained. A discussion on singularities is also included.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qianshuo Liu ◽  
Xiaobai Liu ◽  
Defeng Zhao ◽  
Xuelei Ruan ◽  
Rui Su ◽  
...  

AbstractThe blood–brain barrier (BBB) has a vital role in maintaining the homeostasis of the central nervous system (CNS). Changes in the structure and function of BBB can accelerate Alzheimer’s disease (AD) development. β-Amyloid (Aβ) deposition is the major pathological event of AD. We elucidated the function and possible molecular mechanisms of the effect of pseudogene ACTBP2 on the permeability of BBB in Aβ1–42 microenvironment. BBB model treated with Aβ1–42 for 48 h were used to simulate Aβ-mediated BBB dysfunction in AD. We proved that pseudogene ACTBP2, RNA-binding protein KHDRBS2, and transcription factor HEY2 are highly expressed in ECs that were obtained in a BBB model in vitro in Aβ1–42 microenvironment. In Aβ1–42-incubated ECs, ACTBP2 recruits methyltransferases KMT2D and WDR5, binds to KHDRBS2 promoter, and promotes KHDRBS2 transcription. The interaction of KHDRBS2 with the 3′UTR of HEY2 mRNA increases the stability of HEY2 and promotes its expression. HEY2 increases BBB permeability in Aβ1–42 microenvironment by transcriptionally inhibiting the expression of ZO-1, occludin, and claudin-5. We confirmed that knocking down of Khdrbs2 or Hey2 increased the expression levels of ZO-1, occludin, and claudin-5 in APP/PS1 mice brain microvessels. ACTBP2/KHDRBS2/HEY2 axis has a crucial role in the regulation of BBB permeability in Aβ1–42 microenvironment, which may provide a novel target for the therapy of AD.


2017 ◽  
Vol 5 (12) ◽  
pp. e13290 ◽  
Author(s):  
Anne Hahn ◽  
Johannes Faulhaber ◽  
Lalita Srisawang ◽  
Andreas Stortz ◽  
Johanna J Salomon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document