Virtual Gas Turbines Part I: A Top-Down Geometry Modelling Environment for Turbomachinery Application

Author(s):  
Davendu Kulkarni ◽  
Gan Lu ◽  
Feng Wang ◽  
Luca di Mare

Abstract The gas turbine engine design involves multi-disciplinary, multi-fidelity iterative design-analysis processes. These highly intertwined processes are nowadays incorporated in automated design frameworks to facilitate high-fidelity, fully coupled, large-scale simulations. The most tedious and time-consuming step in such simulations is the construction of a common geometry database that ensures geometry consistency at every step of the design iteration, is accessible to multi-disciplinary solvers and allows system-level analysis. This paper presents a novel design-intent-driven geometry modelling environment that is based on a top-down feature-based geometry model generation method. The geometry features in this modelling environment are organised in a turbomachinery feature taxonomy. They produce a tree-like logical structure representing the engine geometry, wherein abstract features outline the engine architecture, while lower-level features define the detailed geometry. This top-down flexible feature-tree arrangement enables the design intent to be preserved throughout the design process, allows the design to be modified freely and supports the design intent variations to be propagated throughout the geometry model automatically. The application of the proposed feature-based geometry modelling environment is demonstrated by generating a whole-engine computational geometry model. This geometry modelling environment provides an efficient means of rapidly populating complex turbomachinery assemblies. The generated engine geometry is fully scalable, easily modifiable and is re-usable for generating the geometry models of new engines or their derivatives. This capability also enables fast multi-fidelity simulation and optimisation of various gas turbine systems.

2021 ◽  
Author(s):  
Davendu Y. Kulkarni ◽  
Gan Lu ◽  
Feng Wang ◽  
Luca di Mare

Abstract The gas turbine engine design involves multi-disciplinary, multi-fidelity iterative design-analysis processes. These highly intertwined processes are nowadays incorporated in automated design frameworks to facilitate high-fidelity, fully coupled, large-scale simulations. The most tedious and time-consuming step in such simulations is the construction of a common geometry database that ensures geometry consistency at every step of the design iteration, is accessible to multi-disciplinary solvers and allows system-level analysis. This paper presents a novel design-intent-driven geometry modelling environment that is based on a top-down feature-based geometry model generation method. In the proposed object-oriented environment, each feature entity possesses a separate identity, denotes an abstract geometry, and carries a set of characteristics. These geometry features are organised in a turbomachinery feature taxonomy. The engine geometry is represented by a tree-like logical structure of geometry features, wherein abstract features outline the engine architecture, while the detailed geometry is defined by lower-level features. This top-down flexible arrangement of feature-tree enables the design intent to be preserved throughout the design process, allows the design to be modified freely and supports the design intent variations to be propagated throughout the geometry automatically. The application of the proposed feature-based geometry modelling environment is demonstrated by generating a whole-engine computational geometry. This geometry modelling environment provides an efficient means of rapidly populating complex turbomachinery assemblies. The generated engine geometry is fully scalable, easily modifiable and is re-usable for generating the geometry models of new engines or their derivatives. This capability also enables fast multi-fidelity simulation and optimisation of various gas turbine systems.


Author(s):  
Tomoki Taniguchi ◽  
Ryoji Tamai ◽  
Yoshihiko Muto ◽  
Satoshi Takami ◽  
Ryozo Tanaka ◽  
...  

Kawasaki Heavy Industries, Ltd (KHI) has started a comprehensive program to further improve performance and availability of existing Kawasaki gas turbines. In the program, one of the Kawasaki’s existing gas turbine was selected from the broad product line and various kinds of technology were investigated and adopted to further improve its thermal performance and availability. The new technologies involve novel film cooling of turbine nozzles, advanced and large-scale numerical simulations, new thermal barrier coating. The thermal performance target is combined cycle efficiency of 51.6% and the target ramp rate is 20% load per minute. The program started in 2015 and engine testing has just started. In this paper, details of the program are described, focusing on design procedure.


Author(s):  
Glenn McAndrews

Electric starter development programs have been the subject of ASME technical papers for over two decades. Offering significant advantages over hydraulic or pneumatic starters, electric starters are now poised to be the preferred choice amongst gas turbine customers. That they are not now the dominant starter in the field after decades of investment and experimentation is attributable to many factors. As with any new technology, progress is often unsteady, depending on budgets, market conditions, customer buy-in, etc. Additionally, technological advances in the parent technologies, in this case electric motors, can abruptly and rapidly change, further disturbing the best laid introduction plans. It is therefore not too surprising that only recently, is the industry beginning to see the deployment of electric starters on production gas turbines. The earliest adoption occurred on smaller gas turbine units, generally less than 10 MW in power. More recently, gas turbines greater than 10 MWs are being sold with electric starters. The authors expect that regardless of their size or fuel supply, most all future gas turbine users will opt for electric starters. This may even include the “larger” frame machines with power greater than 100 MW. Starting with some past history, this paper will not only summarize past development efforts, it will attempt to examine the current deployment of electric starters throughout the marine and industrial gas turbine landscapes. The large-scale acceptance of electric start systems for both new production and retrofit will depend on the favorable cost/benefit assessment when weighing both first cost and life cycle cost. The current and intense activity in electric vehicle applications is giving rise to even more power dense motors. The paper will look at some of these exciting applications, the installed products, and the technologies behind the products. To what extent these new products may serve the needs of the gas turbine community will be the central question this paper attempts to answer.


Author(s):  
Mark van Roode

Ceramic gas turbine development that started in the 1950s has slowed considerably since most of the large-scale ceramic gas turbine development programs of the 1970s–1990s ended. While component durability still does not meet expectations, the prospect of significant energy savings and emissions reductions, potentially achievable with ceramic gas turbines, continues to justify development efforts. Four gas turbine applications have been identified that could be commercially attractive: a small recuperated gas turbine (microturbine) with ∼35% electrical efficiency, a recuperated gas turbine for transportation applications with ∼40% electrical efficiency with potential applications for efficient small engine cogeneration, a ∼40% efficient mid-size industrial gas turbine and a ∼63% (combined cycle) efficient utility turbine. Key technologies have been identified to ensure performance and component durability targets can be met over the expected life cycle for these applications. These technologies include: a Si3N4 or SiC with high fracture toughness, durable EBCs for Si3N4 and SiC, an effective EBC/TBC for SiC/SiC, a durable Oxide/Oxide CMC with thermally insulating coating, and the Next Generation CMCs with high strength that can be used as structural materials for turbine components for small engines and for rotating components in engines of various sizes. The programs will require integrated partnerships between government, national laboratories, universities and industry. The overall cost of the proposed development programs is estimated at U.S. $100M over ten-years, i.e. an annual average of U.S. $10M.


2015 ◽  
Vol 656-657 ◽  
pp. 113-118
Author(s):  
Hsiu Mei Chiu ◽  
Po Chuang Chen ◽  
Yau Pin Chyou ◽  
Ting Wang

The effect of synthetic natural gas (SNG) and mixture of syngas and SNG fed to Natural Gas Combined-Cycle (NGCC) plants is presented in this study via a system-level simulation model. The commercial chemical process simulator, Pro/II®V8.1.1, was used in the study to build the analysis model. The NGCC plant consists of gas turbine (GT), heat recovery steam generator (HRSG) and steam turbine (ST). The study envisages two analyses as the basic and feasibility cases. The former is the benchmark case which is verified by the reference data with the GE 7FB gas turbine. According to vendor’s specification, the typical net plant efficiency of GE 7FB NGCC with two gas turbines to one steam turbine is 57.5% (LHV), and the efficiency is the benchmark in the simulation model built in the study. The latter introduces a feasibility study with actual parameters in Taiwan. The SNG-fed GE 7FB based combined-cycle is evaluated, and the mixture of SNG and syngas is also evaluated to compare the difference of overall performance between the two cases. The maximum ratio of syngas to SNG is 0.14 due to the constraint for keeping the composition of methane at a value of 80 mol%, to meet the minimum requirement of NG in Taiwan. The results show that the efficiency in either case of SNG or mixture of SNG and syngas is slightly lower than the counterpart in the benchmark one. Because the price of natural gas is much higher than that of coal, it results in higher idle capacity of NGCC. The advantage of adopting SNG in Taiwan is that it could increase the capacity factor of combined-cycles in Taiwan. The study shows a possible way to use coal and reduce the CO2emission, since coal provides nearly half of the electricity generation in Taiwan in recent years.


Author(s):  
Hyunsu Kang ◽  
Sungjong Ahn ◽  
Kyusic Hwang ◽  
Justin Bock ◽  
Jeongseek Kang ◽  
...  

Abstract This paper describes the flow and vibrations measured in a 1.5-stage transonic research compressor tested at the Notre Dame Turbomachinery Laboratory. The compressor is a sub-scale version of a large-scale industrial gas turbine. The experiment measured the compressor performance and investigated the operability issues of stall and flow-induced blade vibrations due to buffet and flutter. The buffet was investigated at full-speed with fully-closed inlet guide vanes; the full-speed, no-load condition of gas turbines used for power generation. The flutter was investigated at part-speed conditions with partially closed guide vanes; the part-power condition where stall flutter typically occurs for aero-engines. At both of these conditions the blades operate with high incidence and moderate velocity, which can result in flow-induced vibrations. Aero-elastic simulations were performed to predict the flutter boundary. The flutter analysis predicted positive aerodynamic damping near the operating line, and a decrease in aerodynamic damping as the stall boundary was approached. No flutter was observed in the stable operating range of the compressor. The experimental campaign used blade tip timing to measure the vibrations and unsteady pressure transducers above the compressor blade. These two types of data were correlated to better understand the drivers of vibration. The paper describes the behavior of the aerodynamic drivers of buffet and flutter and the resulting vibration.


Author(s):  
Mark van Roode

Ceramic gas turbine development that started in the 1950s has slowed considerably since most of the large-scale ceramic gas turbine development programs of the 1970s–1990s ended. While component durability still does not meet expectations, the prospect of significant energy savings and emission reductions, potentially achievable with ceramic gas turbines, continues to justify development efforts. Four gas turbine applications have been identified that could be commercially attractive: a small recuperated gas turbine (microturbine) with ∼35% electrical efficiency, a recuperated gas turbine for transportation applications with ∼40% electrical efficiency with potential applications for efficient small engine cogeneration, a ∼40% efficient midsize industrial gas turbine, and a ∼63% (combined cycle) efficient utility turbine. Key technologies have been identified to ensure performance and component durability targets can be met over the expected life cycle for these applications. These technologies include a Si3N4 or SiC with high fracture toughness, durable EBCs for Si3N4 and SiC, an effective EBC∕TBC for SiC∕SiC, a durable oxide∕oxide ceramic matrix composite (CMC) with thermally insulating coating, and the next generation CMCs with high strength that can be used as structural materials for turbine components for small engines and for rotating components in engines of various sizes. The programs will require integrated partnerships between government, national laboratories, universities, and industry. The overall cost of the proposed development programs is estimated at U.S. $100M over 10years, i.e., an annual average of U.S. $10M.


Author(s):  
Abdallah Bouam ◽  
Slimane Aissani ◽  
Rabah Kadi

The gas turbines are generally used for large scale power generation. The basic gas turbine cycle has low thermal efficiency, which decreases in the hard climatic conditions of operation, so the cycles with thermodynamic improvement is found to be necessary. Among several methods shown their success in increasing the performances, the steam injected gas turbine cycle (STIG) consists of introducing a high amount of steam at various points in the cycle. The main purpose of the present work is to improve the principal characteristics of gas turbine used under hard condition of temperature in Algerian Sahara by injecting steam in the combustion chamber. The suggested method has been studied and compared to a simple cycle. Efficiency, however, is held constant when the ambient temperature increases from ISO conditions to 50°C. Computer program has been developed for various gas turbine processes including the effects of ambient temperature, pressure ratio, injection parameters, standard temperature, and combustion chamber temperature with and without steam injection. Data from the performance testing of an industrial gas turbine, computer model, and theoretical study are used to check the validity of the proposed model. The comparison of the predicted results to the test data is in good agreement. Starting from the advantages, we recommend the use of this method in the industry of hydrocarbons. This study can be contributed for experimental tests.


Author(s):  
M. A. Monroe ◽  
A. H. Epstein ◽  
H. Kumakura ◽  
K. Isomura

The performance of a regenerated gas turbine generator in the 3–5 kW power range has been analyzed to understand why its measured efficiency was on the order of 6% rather than the 20% suggested by consideration of its components’ efficiencies as measured on rigs. This research suggests that this discrepancy can be primarily attributed to heat and fluid leaks not normally considered in the analysis of large gas turbine engines because they are not as important at large scale. In particular, fluid leaks among the components and heat leakage from the hot section into the compressor flow path contributed the largest debits to the engine performance. Such factors can become more important as the engine size is reduced. Other non-ideal effects reducing engine performance include temperature flow distortion at the entrance to both the compressor and turbine. A cycle calculation including all of the above effects matched measured engine data. It suggests that relatively simple changes such as thermal isolation and leak sealing can increase both power output and efficiency of this engine, over 225% in the latter case. The validity of this analysis was demonstrated on an engine in which partial thermal isolation and improved sealing resulted in a more than 40% increase in engine output power.


Author(s):  
Justin Zachary

Since 1998, the United States has experienced a tremendous increase in power generation projects using gas turbine technology. By burning natural gas as the primary fuel and low sulfur oil as a back-up fuel, gas turbines are the cleanest form of fossil power generation.


Sign in / Sign up

Export Citation Format

Share Document