Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students

2021 ◽  
Author(s):  
Karl Kollmann ◽  
Calum E. Douglas ◽  
S. Can Gülen

This book is a unique blend of history, technology review, theoretical fundamentals, and design guide. The subject matter is primarily piston aeroengine superchargers – developed in Germany during the Second World War (WWII) – which are centrifugal compressors driven either by the main engine crankshaft or by an exhaust gas turbine. The core of the book is an unpublished manuscript by Karl Kollmann, who was a prominent engineer at Daimler-Benz before and during the war. Dr. Kollmann’s manuscript was discovered by Calum Douglas during his extensive research for his earlier book on piston aeroengine development in WWII. It contains a wealth of information on aerothermodynamic and mechanical design of centrifugal compressors in the form of formulae, charts, pictures, and rules of thumb, which, even 75 years later, constitute a valuable resource for engineering professionals and students. In addition to the translation of the original manuscript from German, the authors have completely overhauled the chapters on the aerothermodynamics of centrifugal compressors so that the idiosyncratic coverage (characteristic of German scientific literature at that time) is familiar to a modern reader. Furthermore, the authors added chapters on exhaust gas turbines (for turbo-superchargers), piston aeroengines utilizing them, and turbojet gas turbines. Drawing upon previously unpublished material from the archived German documents, those chapters provide a concise but technically precise and informative look into those technologies, where great strides were made in Germany during the war. In summary, the coverage is intended to be useful not only to history buffs with a technical bent but also to the practicing engineers and engineering students to help with their day-to-day activities in this particular field of turbomachinery.

2011 ◽  
Vol 18 (4) ◽  
pp. 43-48 ◽  
Author(s):  
Marek Dzida ◽  
Wojciech Olszewski

Comparing combined gas tubrine/steam turbine and marine low speed piston engine/steam turbine systems in naval applications The article compares combined systems in naval applications. The object of the analysis is the combined gas turbine/steam turbine system which is compared to the combined marine low-speed Diesel engine/steam turbine system. The comparison refers to the additional power and efficiency increase resulting from the use of the heat in the exhaust gas leaving the piston engine or the gas turbine. In the analysis a number of types of gas turbines with different exhaust gas temperatures and two large-power low-speed piston engines have been taken into account. The comparison bases on the assumption about comparable power ranges of the main engine.


2021 ◽  
Author(s):  
Laura Herraiz ◽  
Maria Elena Diego ◽  
Jean-Michel Bellas ◽  
Karen N. Finney ◽  
Mohamed Pourkashanian ◽  
...  

1947 ◽  
Vol 14 (2) ◽  
pp. A99-A102
Author(s):  
Ronald B. Smith

Abstract High temperatures involved in the operation of the gas turbine have introduced many new problems in the properties of the metals with which the designer has to work. This paper outlines some of these and offers a line of approach taken successfully by the author’s company in solving them.


2021 ◽  
Author(s):  
Zhitao Wang ◽  
Jiayi Ma ◽  
Haichao Yu ◽  
Tielei Li

Abstract The combined gas turbine and gas turbine power propulsion device (COGAG power propulsion device) is an advanced combined power system, which uses multiple gas turbines as the main engine to drive propellers to propel the ship. COGAG power propulsion device has high power density, excellent stability and maneuverability, it receives more and more attention in the field of ship power at home and abroad. This article takes the COGAG power propulsion device as the research object, uses simulation methods to study its steady-state operating characteristics, and conducts a ship-engine-propeller optimization matching analysis based on economy and maneuverability. The research work carried out in this article is as follows. Firstly, according to the structural relationship between the various components and the system thermal cycle mode of the COGAG power propulsion device, establish the controller, main engine, gear box, clutch, shafting, propeller, ship and other components and simulation models of the system with the modular modeling idea. Secondly, divide the gears according to ship speed. For the four working modes of single-gas turbine with load, dual-gas turbine with load, three-gas turbine with load, and four-gas turbine with load, analysis the ship-engine-propeller optimization matching of the COGAG power propulsion device based on economy and maneuverability, and calculate the best shaft speed and propeller pitch ratio in each gear, so as to obtain the steady-state operation characteristics of the COGAG power propulsion device based on the ship-engine-propeller matching, which provides a basis for determining the target parameters of the dynamic process.


1981 ◽  
Vol 103 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Colin F. McDonald ◽  
Murdo J. Smith

For several years, design studies have been underway in the U.S. on a nuclear closed-cycle gas turbine plant (HTGR-GT). This paper presents design aspects of the helium turbo-machine portion of these studies. Gas dynamic and mechanical design considerations are presented for helium turbomachines in the 400 MWe (non-intercooled) and 600 MWe (intercooled) power range. Design of the turbomachine is a key element in the overall power plant program effort, which is currently directed towards the selection of a reference HTGR-GT commercial plant configuration for the U.S. utility market. A conservative design approach has been emphasized to provide for maximum safety and durability. The studies presented for the integrated plant concept outline the necessary close working relationship between the reactor primary system and turbomachine designers. State-of-the-art technology from large industrial gas turbines developed in the U.S., considered directly applicable to the design of a helium turbomachine, particularly in the areas of design methodology, performance, materials, and fabrication methods, is emphasized.


2019 ◽  
pp. 20-24
Author(s):  
Максим Андрійович Пирисунько ◽  
Роман Миколайович Радченко ◽  
Андрій Адольфович Андреєв ◽  
Вікторія Сергіївна Корнієнко

The problem of air basin pollution of the World Ocean with harmful emissions from the exhaust gases of marine diesel engines is primarily associated with the creation of highly efficient technologies for the neutralization of nitrogen oxides NOx on exhaust gases from a diesel engine. Emissions of harmful substances from the combustion of marine fuels are limited by international atmospheric protection programs and the requirements of the International Maritime Organization (IMO). The requirements relate to almost all groups of harmful emissions in marine engines and the more stringent of them are primarily related to nitrogen oxides NOx and sulfur oxides SOx. To reduce harmful emissions from exhaust gases into the environment, scientists and world engine leaders use and suggest various methods for reducing the content of harmful substances in exhaust gases. The implementation of new standards in the areas of further improvement of the working process, the use of alternative fuels, fuel, and air additives, as well as selective catalytic reduction systems do not preclude further development of scientific research in the field of exhaust gas cleaning. One of the promising ways in environmentalizing marine internal combustion engines is the neutralization of harmful substances in exhaust gases through particular gas recirculation (EGR-technology). However, the use of such techniques conflicts with the engine's energy efficiency. In the work presented, the scheme-design solution of the exhaust gas recirculation system with using the heat of recirculation gases by an ejector refrigeration machine for cooling the air at the intake of ship's main engine is proposed. The effect of using the heat of recirculation gases for cooling the air at the intake of the engine is analyzed taking into account the changing climatic conditions for a particular vessel's route line. It is shown that the use of an ejector refrigeration machine reduces the air temperature at the entrance of the main engine by 5…15 ° С, which reduces the specific fuel consumption. This reduces emissions of harmful substances when the engine is running with recirculation of gases.


Author(s):  
Y. Zhu ◽  
H. Yamada ◽  
S. Hayashi

A diode-laser absorption system having the potential of simultaneous determination of NO and NO2 concentrations in the exhaust jets from gas turbines has been being developed. The sensitivities of the detection units at a typical exhaust gas temperature of 800 K were estimated as 30 ppmv-m and 3.7 ppmv-m for NO and NO2, respectively. Experiments using simulated exhaust gas flows have shown that CO2 do not have any interference with the NO and NO2 measurements. The detection limits in ppm of the system were considerably lowered by using a multi-pass optical system. A pair of off-axis parabola mirrors was useful to prevent the laser beam from straying from the detection area of the sensor due to the beam steering in the exhaust gas. Furthermore, the multi-path optical duct fabricated with 14 mirrors on the inner wall was effective in the measurement of NO and NO2 in the exhaust gas from gas turbines.


Author(s):  
R. J. Antos ◽  
W. C. Emmerling

One common method of reducing the NOx emissions from industrial gas turbines is to inject water into the combustion process. The amount of water injected depends on the emissions rules that apply to a particular unit. Westinghouse W501B industrial gas turbines have been operated at water injection levels required to meet EPA NOx emissions regulations. They also have been operated at higher injection levels required to meet stricter California regulations. Operation at the lower rates of water did not affect combustor inspection and/or repair intervals. Operation on liquid fuels with high rates of water also did not result in premature distress. However, operation on gas fuel at high rates of water did cause premature distress in the combustors. To evaluate this phenomenon, a comprehensive test program was conducted; it demonstrated that the distress is the result of the temperature patterns in the combustor caused by the high rates of water. The test also indicated that there is no significant change in dynamic response levels in the combustor. This paper presents the test results, and the design features selected to substantially improve combustor wall temperature when operating on gas fuels, with the high rates of water injection required to meet California applications. Mechanical design features that improve combustor resistance to water injection-induced thermal gradients also are presented.


Author(s):  
Marek Cichocki ◽  
Ilona Salamonik ◽  
Marcin Bielecki ◽  
Ever Fadlun ◽  
Artur Rusowicz

Abstract The typical combined heat and power plants requires the introduction of additional heating medium. The alternative solution is the direct integration of the exhaust gases from heat engine. High temperature, surplus oxygen and low water content of the Gas Turbines exhaust gases enabled the successful integration at industrial scale as: preheated combustion air for industrial furnaces, heat source for drying and for absorption chillers. The article comprises the reference list for direct exhaust gas integration of GTs produced by Baker Hughes formerly GE), the processes overview, GTs selection criteria, as well as the review of documented GTs applications in process industry focusing on technical and economic considerations. Majority of referenced applications for industrial furnace are in the steam methane reformers used in fertilizer industry, as well as steam crackers in petrochemical industries. Several GTs were integrated with crude oil furnace in refinery. Direct drying utilizing exhaust gas from GT, is commonly applied in ceramic, wood derivative, pulp & paper and inorganic chemicals industries. Integrating GTs with absorption chillers was introduced to serve the district heating and cooling system. The described solutions allowed to reduce specific energy consumption by 7–20% or the costs of energy consumption associated with large volume production by 15–30%. The reduction of specific energy consumption allows to decrease the amount of CO2 emitted. The overall efficiency of cogeneration plant above 90% was achieved.


Sign in / Sign up

Export Citation Format

Share Document