New Gas Turbines for the Steel Industry

Author(s):  
Z. Stanley Stys

Applications of the gas turbine in the steel industry appear attractive. Several of these units have been in operation for many years and performance and considerable operating experience already have been gained. A new type of unit has been developed based on these experiences considering newest advances in the art of engineering of a gas turbine. The historic development and layout as well as the various governing aspects of these units burning blast-furnace gas and built for use in the steel industry are described.

Author(s):  
E. Aguet ◽  
J. von Salis

Gas turbines are being used in increasing numbers in the European steel industry, utilizing as fuel blast-furnace gas, and producing either electric power or blast-furnace wind; in some cases both combined. It is now possible to put on record results obtained with these machines in commercial operation, as some of the units have been running practically nonstop for several years. Apart from teething troubles during the first few thousand running hours, the gas turbine has fulfilled all expectations, both regarding the economics of operation and from the maintenance point of view.


Author(s):  
Z. Stanley Stys

Application of the gas turbine in nitric-acid plants appears attractive. Several of these units have been installed recently in this country and performance and operating experience already have been gained. Design, construction, and layout of “package” units for this particular process are described.


Author(s):  
Federico Bonzani ◽  
Giacomo Pollarolo ◽  
Franco Rocca

ANSALDO ENERGIA S.p.A. has been commissioned by ELETTRA GLT S.p.A, a company located in Trieste, Italy for the realisation of a combined cycle plant where all the main components (gas turbine, steam turbine, generator and heat recovery steam generator) are provided by ANSALDO ENERGIA. The total power output of the plant is 180 MW. The gas turbine is a V94.2 K model gas turbine dual fuel (natural gas and steelworks process gas), where the fuel used as main fuel is composed by a mixture of natural gas, blast furnace gas and coke oven gas in variable proportions according to the different working conditions of the steel work plant. The main features adopted to burn such a kind of variability of fuels are reported below: • fuel as by product of steel making factory gas (coke oven gas “COG”, blast furnace gas “BFG”) with natural gas integration; • modified compressor from standard V94.2, since no air extraction is foreseen; • dual fuel burner realised based on Siemens design. This paper describes the operating experience achieved on the gas turbine, focusing on the main critical aspect to be overcome and on to the test results during the commissioning and the early operating phase. The successful performances carried out have been showing a high flexibility in burning with stable combustion a very different fuel compositions with low emissions measured all operating conditions.


1970 ◽  
Author(s):  
K. Bammert ◽  
H. Rehwinkel

The paper discusses the present stage of development of combustion chambers for fossil-fired closed-cycle gas turbines, describing West Germany’s “Gelsenkirchen” plant which can be operated with blast-furnace gas and fuel oil with any desired ratio of gas to oil. The output data and the efficiency of this plant are illustrated by test results. In the development and construction of fossil-fired closed-cycle gas turbine plants, the gas heater presents the greatest difficulties and is the most expensive part of the plant. Therefore, very detailed measurements were taken to determine the total heat absorption in the combustion chamber and its local distribution over the length of the chamber. The results obtained are compared with previous measurements at a smaller plant, the mine-gas and pulverized-coal fired “Haus Aden” plant.


Author(s):  
Klaus Brun ◽  
Luis Eduardo Gonzalez ◽  
John P. Platt

The usage of an industrial inlet fogging and overspraying system on BP Colombia’s fleet of GE 5002 gas turbines was intended to provide additional shaft power output and improved efficiency. However, operating experience has shown less than anticipated power increase and almost no efficiency change, while the gas turbines have experienced more rapid degradation. Consequently, a detailed study was undertaken to identify the principal degradation mechanisms and quantify their relative influence on the gas turbine’s performance and life reduction. This study included a field assessment; review and analysis of the installation and operating data from the historical trend monitoring system; inspection of a rotor for fouling, corrosion, and pitting; materials analysis of the fouling deposits, rotor surface pitting, and inlet filter media; review of the function and effects of inlet fogging and overspray; assessment of the effectiveness of the current on-line/off-line compressor washing program and its compatibility with the overspraying operation; and an analysis of the overall gas turbine efficiency to determine levels of performance degradation. Results from this study identified the principal gas turbine degradation mechanisms, such as blade erosion, corrosion, fouling tip clearance widening, their causes and their relative influence on the overall performance. For example, the study showed that the total power and efficiency degradation of the units exceeded 10% at the time of the rotor overhaul which is well above what is expected for this type of gas turbine. About 70% of this degradation was due to blade erosion and rotor clearance widening. These were attributed to the water overspray operation of the gas turbines. Surface fouling and pitting also contributed about 20% to the total performance degradation. For the given site conditions, the fogging and overspray system provided a gas turbine performance boost of approximately 2–5% in power and less than 0.5% in efficiency. Of this performance gain, saturation fogging accounted for about 85%, while overspray only provided 15%. The principal findings of this study showed that, while the fogging worked, the performance degradation due to water overspray negated most performance gains after only about 24,000 hours of operation. More detailed findings are included in the paper.


2021 ◽  
Vol 10 (9) ◽  
pp. e59810915006
Author(s):  
Raphael Camargo da Costa ◽  
Cesar Augusto Arezo e Silva Jr. ◽  
Júlio Cesar Costa Campos ◽  
Washington Orlando Irrazabal Bohorquez ◽  
Rogerio Fernandes Brito ◽  
...  

The study was developed inside an integrated steel mill, located in Rio de Janeiro city, aiming to analyse the technical-economic feasibility of installing a new inlet air refrigeration system for the gas turbines. The technologies applied for such purpose are named Turbine Inlet Air Cooling (TIAC) technologies. The power plant utilizes High Fogging and Evaporative Cooling methods for reducing the compressor’s inlet air temperature, however, the ambient climate condition hampers the turbine’s power output when considering its design operation values. Hence, this study was proposed to analyse the installation of an additional cooling system. The abovementioned power plant has two heavy-duty gas turbines and one steam turbine, connected in a combined cycle configuration. The cycle nominal power generation capacity is 450 MW with each of the gas turbines responsible for 90 MW. The gas turbines operate with steelwork gases, mainly blast furnace gas (BFG), and natural gas. The plant has its own weather station, which provided significant and precise data regarding the local climate conditions over the year of 2017. An in-house computer model was created to simulate the gas turbine power generation and fuel consumption considering both cases: with the proposed TIAC system and without it, allowing the evaluation of the power output increase due to the new refrigeration system. The results point out for improvements of 4.22% on the power output, corresponding to the electricity demand of approximately 32960 Brazilian homes per month or yearly earnings of 3.92 million USD.


Author(s):  
R. W. MaCaulay ◽  
C. M. Gardiner

ASME Paper 48-A-109 described combustion liners and fuel nozzles which were originally used in General Electric gas turbines. Operating experience has shown certain shortcomings of these, particularly in regard to liner life and frequency of changing required by the fuel nozzles. This paper describes a new type of liner and fuel nozzle which, on the basis of limited field experience, have shown considerable improvement in these respects. It also gives a brief review of test data and operating experience on combustion liners and fuel nozzles.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


Author(s):  
Tingting Wei ◽  
Dengji Zhou ◽  
Jinwei Chen ◽  
Yaoxin Cui ◽  
Huisheng Zhang

Since the late 1930s, gas turbine has begun to develop rapidly. To improve the economic and safety of gas turbine, new types were generated frequently by Original Equipment Manufacture (OEM). In this paper, a hybrid GRA-SVM prediction model is established to predict the main design parameters of new type gas turbines, based on the combination of Grey Relational Analysis (GRA) and Support Vector Machine (SVM). The parameters are classified into two types, system performance parameters reflecting market demands and technology development, and component performance parameters reflecting technology development and coupling connections. The regularity based on GRA determines the prediction order, then new type gas turbine parameters can be predicted with known system parameters. The model is verified by the application to SGT600. In this way, the evolution rule can be obtained with the development of gas turbine technology, and the improvement potential of several components can be predicted which will provide supports for overall performance design.


Author(s):  
Ari Suomilammi

Gasum is an importer of natural gas and is operating and maintaining the Finnish transmission pipeline in which the pressure is maintained with three compressor stations. Gasum’s compressor stations are unmanned and remotely controlled from the central control room. Some of the compressor units are equipped with dry gas seals. The otherwise satisfactory operation of dry gas seals has the disadvantage of methane emissions. Reduction of methane emissions has been stated as a target by international auspices of the Kyoto Protocol or through national programs seeking to reduce emissions. The application described in this paper to collect vent gases from the dry gas seals was installed into four of the compressor units during 2001. The compressors are centrifugal compressors: two of them are Nuovo Pignone PCL603 with PGT10DLE (10 MW) gas turbine and two are Demag DeLaval 2B-18/18 with Siemens Tornado gas turbines (6,5 MW). It is normal for dry gas seals to have a small leakage of gas through the seals due to the function principle and required cooling of the seals. This gas emitted from the seals is normally about of 5...10nm3/h per one compressor unit during operation and during the stand-still the leakage is almost zero. In the year 2000 the total amount of emitted gas in Gasum’s units was about 50.000 nm3 per four compressor units. The target was to find an efficient method to collect the dry gas seal vent gas and utilize it. The solution must be simple and its investment costs must be feasible. Injection of the vent gases to the gas turbine inlet air flow was selected as a solution among some alternatives. The operating experience so far has been several thousands of operating hours without any malfunctions. The amount of collected gas by this system has been in the range of 80.000 nm3 per annum. The total cost of the system for four compressor units was about 85.000€. The intention of this paper is not to describe any scientific approach to the issue but to present a practical solution with operating experience.


Sign in / Sign up

Export Citation Format

Share Document