Calculated Ground Level Concentration of Pollutants From Gas Turbine Using an Air Quality Display Model Computer Program

1974 ◽  
Author(s):  
N. R. Dibelius ◽  
George Touchton ◽  
Thomas Kane

This paper contains the calculated ground level concentrations of air pollutants from 11 gas turbine models. These calculations were made using Charlotte, N.C. meteorological data. Four of these are simple cycle machines covering a range of size from 5050 hp to 65 MW and four are regenerative machines. Another three are combined cycle (STAG) machines, two machines having unfired and one having a fired heat recovery steam generator. The calculations were made using a slightly modified version of the United States Environmental Protection Agencies Air Quality Display Model Computer Program.

2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


Author(s):  
Maher A. Elmasri

A fast, interactive, flexible computer program has been developed to facilitate system selection and design for gas turbine based power and cogeneration plants. A data base containing ISO performance information on forty-two gas turbines is coupled to an off-design model to predict engine characteristics for different site and installation parameters. A heat recovery steam generator (HRSG) model allows boiler size and cost to be estimated as a function of the system’s technical parameters. The model can handle HRSG’s with up to two live steam pressures plus a third feedheating/deaerating drum. Five basic types of combined cycle are covered with up to four different process steam streams for cogeneration or gas turbine injection. Two additional feedheating steam bleeds are supported for condensing combined cycles. The program is intelligent with some internal decision making capabilities regarding process steam sourcing and flow directions and will automatically select the appropriate heat and mass balance procedures to cover a wide variety of process flow schematics. The program provides plotter outputs to show the cycle process flow schematic, T-s and h-s diagrams, and HRSG temperature profiles. An application of GTPRO in analyzing some technical and economic performance trade-offs for two-pressure combined cycles is presented.


2015 ◽  
Vol 17 (4) ◽  
pp. 673-681 ◽  

<div> <p>ISC-Aermod view dispersion model has been used to study the ground level concentration of hydrocarbon (HC). The purpose was to predict the air quality effects from off-grid diesel power generators operated by a textile factory in Lagos, Nigeria on its host airshed. Emissions from 22 point sources in 5 sections of the factory were considered with 6 different scenarios. 4 years of hourly meteorological observations were used for the investigation of dispersion. The model output showed the highest value of maximum ground level concentration at 90 m south east of the factory. The predicted impact using the worst case scenario showed that the ambient HC of the host air shed will change by 0.01-0.05% of Nigeria&rsquo;s Federal Ministry of Environment (FMENV) standard. HC emissions from factory will not significantly affect the host air shed as the maximum concentrations from the worst case scenario were still lower than the national standard. However, since emissions from other factories will also be released into the same host environment, an integrated approach factoring the contributions from other factories should be employed in host air quality management.</p> </div> <p>&nbsp;</p>


Author(s):  
Karen A. Walder ◽  
Steven D’Alessio

Demand for power in the United States is projected to increase between 2 and 4 percent per year for the next 10 years based on various studies. At the same time, the rise in environmental regulatory restrictions has made it increasingly difficult and expensive for utilities to meet these growing power demands with traditional power sources. During the 1960’s and 70’s hundreds of gas turbine electric generating units were installed in the United States. Many are now approaching the end of their useful economic lives owing to increased maintenance and fuel costs. With the major advances in both fuel efficiency and exhaust gas emission quality power producers are looking toward the repowering of existing plants with modern gas turbines such as the FT8. (Day and Koehler, 1988) This paper describes the design of Turbo Power and Marine Systems’ (Turbo Power) FT8® repowering package for the present FT4 powered plant at Public Service Electric and Gas Company’s (PSE&G) Burlington Generating Station. Given the objectives of minimum design effort and minimum field construction time, the retrofit package provides an optimal blending of existing FT4 and standard FT8 equipment. Performance, impact on operation, reliability, and availability of the FT8 industrial gas turbine were also important considerations in the retrofit design.


Author(s):  
L. Petry ◽  
T. Meiers ◽  
D. Reuschenberg ◽  
S. Mirzavand Borujeni ◽  
J. Arndt ◽  
...  

Abstract. This paper presents the design and the results of a novel approach to predict air pollutants in urban environments. The objective is to create an artificial intelligence (AI)-based system to support planning actors in taking effective and adequate short-term measures against unfavourable air quality situations. In general, air quality in European cities has improved over the past decades. Nevertheless, reductions of the air pollutants particulate matter (PM), nitrogen dioxide (NO2) and ground-level ozone (O3), in particular, are essential to ensure the quality of life and a healthy life in cities. To forecast these air pollutants for the next 48 hours, a sequence-to-sequence encoder-decoder model with a recurrent neural network (RNN) was implemented. The model was trained with historic in situ air pollutant measurements, traffic and meteorological data. An evaluation of the prediction results against historical data shows high accordance with in situ measurements and implicate the system’s applicability and its great potential for high quality forecasts of air pollutants in urban environments by including real time weather forecast data.


1974 ◽  
Author(s):  
F. W. Lipfert

An analysis of gas turbine ambient air quality impact is presented, from the standpoint of the acceptability of alternate fuels having higher sulfur content and possibly higher particulate emissions. Various plume rise formulas are compared, and formulas are given for maximum ground level concentrations for both short term (1 to 3 hr) and intermediate (3 to 24 hr) periods. The results show that the U.S. Federal Air quality standards may allow large gas turbine complexes (∼500 mw) burning up to 1% sulfur fuel, for example. Taking advantage of this capability could increase the supply of lower sulfur fuels for home heating and/or transportation use.


Author(s):  
Joseph Sinai ◽  
Chemi Sugarmen ◽  
Uriyel Fisher

Adapting a gas turbine to high-temperature solar receivers and solar tower technology constitutes real progress towards commercial solar power utilization with high efficiency combined cycle power system. Solar gas turbine systems can also be adapted to hybrid solar/fossil fuel operation, thanks to its high efficiency conversion, relatively small solar field, and quick response to load fluctuations, low CO2 emissions, easy start, and more effective equipment utilization. ORMAT initiated adaptation and modification of gas turbines for solar energy applications in the early 1990s in cooperation with the Weizmann Institute of Science and later with the Boeing Corporation, with the support of the United States Israel Science and Technology Foundation (USISTF). Ultimately, the concept reached its successful realization (2001–2004) in the solar tower Plataforma Solar de Almeria (Spain) which has three solar receivers and a receiving system designed and supplied by the German Aerospace Center DLR.


2021 ◽  
Vol 13 (8) ◽  
pp. 4276
Author(s):  
Awkash Kumar ◽  
Anil Kumar Dikshit ◽  
Rashmi S. Patil

The Gaussian-based dispersion model American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) is being used to predict concentration for air quality management in several countries. A study was conducted for an industrial area, Chembur of Mumbai city in India, to assess the agreement of observed surface meteorology and weather research and forecasting (WRF) output through AERMOD with ground-level NOx and PM10 concentrations. The model was run with both meteorology and emission inventory. When results were compared, it was observed that the air quality predictions were better with the use of WRF output data for a model run than with the observed meteorological data. This study showed that the onsite meteorological data can be generated by WRF which saves resources and time, and it could be a good option in low-middle income countries (LIMC) where meteorological stations are not available. Also, this study quantifies the source contribution in the ambient air quality for the region. NOx and PM10 emission loads were always observed to be high from the industries but NOx concentration was high from vehicular sources and PM10 concentration was high from industrial sources in ambient concentration. This methodology can help the regulatory authorities to develop control strategies for air quality management in LIMC.


Author(s):  
Mehrshad Bajoghli

Background: One of the main parts of air quality management is known as modeling of atmospheric pollutants. In this regards, simultaneous application of several models in a project and comparing the results obtained from these models could have been a considerable contribution to air quality managers for taking a more efficient decision. Methods: In this study, the stack of an industrial plant in the southwest of Isfahan was selected as the emission source and the total suspended particles emitted from this stack was simulated by applying AERMOD and ISCST3 view models (version 8.2). In this vein, the modeling process was conducted using MM5 meteorological data in a 50 50 km extent with 2000 m network distance for each of the models in 1-h, 24-h term averages (short term averages) and monthly and annual periods (long term averages) at ground level concentrations (GLC). Results: Results indicated that the highest simulated concentration for both models occurred in a 2000 meters’ distance in the east of the stack. Moreover, the highest simulated concentration applying AERMOD was lower than that of applying ISCST3 in all term averages which is due to existing differences between applied algorithms in these two models. Conclusion: Consequently, applying AERMOD due to the use of more advanced and up-to-date algorithms have priority over ISCST3 model. Applying ISCST3 can also be useful for small projects that require less input data compared to the AERMOD.


Author(s):  
Peter D. J. Hoppesteyn ◽  
Jans Andries ◽  
Klaus R. G. Hein

Advanced integrated gasification combined cycle (IGCC) plants promise to be efficient and environmentally friendly systems to utilise solid fuels for the production of electricity and heat. An IGCC system consists of a gasifier, producing a low calorific value (LCV) fuel gas, and a gas turbine in which the LCV fuel gas is being combusted. At this time some demonstration IGCC plants have been commissioned in the United States and Europe. A sound understanding of the interaction between the gasifier and the gas turbine combustor is critical for successful operation of an IGCC system. Reliable theoretical and experimental information on the characteristics of the gas turbine as a whole and the combustor as such, leading to this information is needed prior to commercialisation of these IGCC systems. The combustion of natural gas in gas turbine combustors has been studied extensively. The combustion of coal-derived LCV fuel gas however has been studied in much less detail. To obtain more fundamental data on the combustion of LCV fuel gas, a 1.5 MW pressurised fluidised bed gasifier (PFBG) with a separate pressurised topping combustor (PTC) has been designed, built and operated at Delft University of Technology (The Netherlands). The maximum system pressure is 10 bar. Experiments have been performed at 8 bar, using recirculated flue gas, steam and oxygen as gasifying agents. The produced LCV fuel gas is combusted in an oxygen blown PTC. In this way a flue gas with a high carbon dioxide concentration can be obtained from which the carbon dioxide can be removed more easily than from flue gases. A numerical model has been constructed to simulate the combustion of the LCV fuel gas in the PTC. A detailed description of the test rig will be given. The first experimental results will be described and compared with simulation results obtained with the commercial Computational Fluid Dynamics code Fluent version 4.3. Finally the future work will be described.


Sign in / Sign up

Export Citation Format

Share Document