scholarly journals Evaluation of a Water-Cooled Gas Turbine Combined Cycle Plant

Author(s):  
A. Caruvana ◽  
W. H. Day ◽  
G. B. Manning ◽  
R. C. Sheldon

General Electric initiated the development of a water-cooled gas turbine in the early 1960’s. The first laboratory model of a water-cooled rotor, 9.7 in. (24.7 cm) was successfully tested in 1973 at sustained firing temperatures of 2850 F (1556 C) and 16 atm pressure while maintaining bucket surface temperatures of 1000 F (583 C) or less. Maximum firing temperatures of 3500 F (1927 C) were also attained during this period. The Electric Power Research Institute (EPRI) funded initial preliminary design work which utilized the water-cooled turbine concept in a combined cycle starting in 1974. Development work to define and resolve potential barrier problems was also funded by EPRI in the original and subsequent follow-on contracts. The United States Energy Research and Development Administration (ERDA) awarded a contract to the General Electric Company in May 1976 to conduct a preliminary design study which incorporates the water-cooled gas turbine concept in a combined cycle plant. The design is based on a gas turbine firing temperature (gas temperature entering the first-stage buckets) of 2600 F (1427 C) utilizing a coal-derived low-Btu gas or coal-derived liquid. This paper presents the results of the ERDA Program. Particular emphasis is devoted to the description of the overall plant design and performance. Turbine subsystems of the water-cooled concept and the alternate cooling concepts considered are also presented in this paper. The operating features and characteristics of an advanced fixed-bed gasifier and associated gas cleanup systems are also discussed relative to the impact on the overall system design and performance.

Author(s):  
A. Zwebek ◽  
P. Pilidis

This paper describes the effects of degradation of the main gas path components of the gas turbine topping cycle on the Combined Cycle Gas Turbine (CCGT) plant performance. Firstly the component degradation effects on the gas turbine performance as an independent unit are examined. It is then shown how this degradation is reflected on a steam turbine plant of the CCGT and on the complete Combined Cycle plant. TURBOMATCH, the gas turbine performance code of Cranfield University was used to predict the effects of degraded gas path components of the gas turbine have on its performance as a whole plant. To simulate the steam (Bottoming) cycle, another Fortran code was developed. Both codes were used together to form a complete software system that can predict the CCGT plant design point, off-design, and deteriorated (due to component degradation) performances. The results show that the overall output is very sensitive to many types of degradation, specially in the turbine of the gas turbine. Also shown is the effect on gas turbine exhaust conditions and how this affects the steam cycle.


Author(s):  
Aristide F. Massardo

Design and performance evaluation of solar space Closed Brayton Cycle (CBC) is described in this paper taking into account the influence of orbital and solar conditions. With fixed external conditions (insolation, Tsink, power) overall performance and area of the plant are obtained and optimized (plant area minimization), while to evaluate plant mass a detailed and complete design of the plant components is carried out. Utilizing as the input the results obtained with fixed external conditions, plant transient orbital analysis (TOA) is performed taking into account modification of insolation, Tsink, and power to be generated versus orbit time, (quasi steady transient analysis). All these methods have been fully integrated — the common inputs are interchanged and the output of one code is directly input to the other codes — in a complete design procedure, named CBC-SPACE, suited for Low Earth Orbit (LEO) station power plant design. The most important results are presented and discussed, while the importance of this study is pointed out taking also into account the possibility to extend this analysis to SDCC (solar dynamic combined cycle) plant proposed by the author (Massardo, 1991).


Author(s):  
Donald A. Kolp ◽  
Charles E. Levey

Zorlu Enerji needed 35 MW of reliable power at a stable frequency to maintain constant speed on the spindles producing thread at its parent company’s textile plant in Bursa, Turkey. In December of 1996, Zorlu selected an LM2500+ combined cycle plant to fill its power-generating requirements. The LM2500+ has output of 26,810 KW at a heat rate of 9,735 Kj/Kwh. The combined cycle plant has an output of 35,165 KW and a heat rate of 7,428 Kj/Kwh. The plant operates in the simple cycle mode utilizing the LM2500+ and a bypass stack and in combined cycle mode using the 2-pressure heat recovery steam generator and single admission, 9.5 MW condensing steam turbine. The generator is driven through a clutch by the steam turbine from the exciter end and by the gas turbine from the opposing end. The primary fuel for the plant is natural gas; the backup fuel is naphtha. Utilizing a load bank, the plant is capable of accepting a 12 MW load loss when the utility breaker trips open; it can sustain this loss while maintaining frequency within 1% on the mill load. The frequency stabilizing capability prevents overspeeding of the spindles, breakage of thousands of strands of thread and a costly shutdown of the mill. A description of the equipment, operation and performance illustrates the unique features of this versatile, compact and efficient generating unit.


2003 ◽  
Vol 125 (3) ◽  
pp. 651-657 ◽  
Author(s):  
A. Zwebek ◽  
P. Pilidis

This paper describes the effects of degradation of the main gas path components of the gas turbine topping cycle on the combined cycle gas turbine (CCGT) plant performance. First, the component degradation effects on the gas turbine performance as an independent unit are examined. It is then shown how this degradation is reflected on a steam turbine plant of the CCGT and on the complete combined cycle plant. TURBOMATCH, the gas turbine performance code of Cranfield University, was used to predict the effects of degraded gas path components of the gas turbine have on its performance as a whole plant. To simulate the steam (bottoming) cycle, another Fortran code was developed. Both codes were used together to form a complete software system that can predict the CCGT plant design point, off-design, and deteriorated (due to component degradation) performances. The results show that the overall output is very sensitive to many types of degradation, especially in the turbine of the gas turbine. Also shown is the effect on gas turbine exhaust conditions and how this affects the steam cycle.


Author(s):  
A. Hirschmann ◽  
M. Casey ◽  
M. Montgomery

The axial exhaust downstream of a gas turbine in a combined cycle plant includes an annular diffuser with struts and a closed hub carrying the turbine rotor bearing. Flow separation occurs at the blunt end of the hub and can also occur on the casing wall and on the struts. A zonal method for the computation of the flow in such diffusers is described. A throughflow code is used for the axisymmetric core flow, a lag-entrainment-integral-method for the blockage of the boundary layers and the wake of the hub. For cases with separated flow a semi-inverse procedure for the coupling is needed. Additional empirical information is required such as a term related to the closing of the hub separation, correlations for the skin friction and the form factor and an estimate of the losses based on a dissipation coefficient. Experimental data from annular diffuser test cases from the literature and from a typical turbine diffuser are used to validate the method. The location of the separation in the diffuser is calculated correctly and the prediction of the pressure recovery is promising, suggesting that this is a useful tool for the preliminary design of highly loaded annular configurations.


Author(s):  
Walter Jury ◽  
David E. Searles

Advanced gas turbine designs require revisiting the optimization process to provide maximum competitiveness of new generating installations. This counts specifically for those designs created for combined cycle applications. Gas turbine performance and its associated exhaust temperature has been increasing at a rapid pace over recent years. The conventional method of selecting a GT based upon price and performance, and then designing a complex bottoming cycle does not provide sufficient solutions for power generation in an open access marketplace. The optimal solution takes into account the interrelation between the GT and WS cycle, leading to a more efficient, simplified and flexible power plant. This analysis shows how different levels of GT exhaust energy lead to different optimum cycle solutions. It shows, as postulated above, that considering the WS cycle demands in gas turbine design leads to a simpler cycle with inherent advantages in efficiency, reliability and flexibility.


Author(s):  
John Sasso

Combustion turbine combined cycle (CTCC) plants have generally been the “power plant of choice” over the past two decades for a number of reasons, including first cost, efficiency, and low emissions. Combustion (Gas) turbine (CT) based plants now account for over 30% of the electric power capacity in the United States. Despite the significant reliance on this technology, the electric Independent System Operators (ISOs) have yet to recognize and acknowledge in their production templates, test forms and performance predicting software the Brayton Cycle limitations, most notably how humidity affects output for CT plants equipped with evaporative cooling systems. Such plants account for an estimated 48% of the CT power installed in the last 10 years. Ignoring the impact of humidity on these plants can lead to errors in production predictions beyond the normal tolerance band of 3% to as high as 9% during peak ambient temperatures for certain units. As such the electric ISO’s prediction of available generation and the associated capacity reserve margins have the potential to be overestimated. The article explores the situation in more depth, presents examples within the NYISO, quantifies the potential impact and recommends easy solutions to close the gap.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


Author(s):  
Daniel Lörstad ◽  
Annika Lindholm ◽  
Jan Pettersson ◽  
Mats Björkman ◽  
Ingvar Hultmark

Siemens Oil & Gas introduced an enhanced SGT-800 gas turbine during 2010. The new power rating is 50.5MW at a 38.3% electrical efficiency in simple cycle (ISO) and best in class combined-cycle performance of more than 55%, for improved fuel flexibility at low emissions. The updated components in the gas turbine are interchangeable from the existing 47MW rating. The increased power and improved efficiency are mainly obtained by improved compressor airfoil profiles and improved turbine aerodynamics and cooling air layout. The current paper is focused on the design modifications of the combustor parts and the combustion validation and operation experience. The serial cooling system of the annular combustion chamber is improved using aerodynamically shaped liner cooling air inlet and reduced liner rib height to minimize the pressure drop and optimize the cooling layout to improve the life due to engine operation hours. The cold parts of the combustion chamber were redesigned using cast cooling struts where the variable thickness was optimized to maximize the cycle life. Due to fewer thicker vanes of the turbine stage #1, the combustor-turbine interface is accordingly updated to maintain the life requirements due to the upstream effect of the stronger pressure gradient. Minor burner tuning is used which in combination with the previously introduced combustor passive damping results in low emissions for >50% load, which is insensitive to ambient conditions. The combustion system has shown excellent combustion stability properties, such as to rapid load changes and large flame temperature range at high loads, which leads to the possibility of single digit Dry Low Emission (DLE) NOx. The combustion system has also shown insensitivity to fuels of large content of hydrogen, different hydrocarbons, inerts and CO. Also DLE liquid operation shows low emissions for 50–100% load. The first SGT-800 with 50.5MW rating was successfully tested during the Spring 2010 and the expected performance figures were confirmed. The fleet leader has, up to January 2013, accumulated >16000 Equivalent Operation Hours (EOH) and a planned follow up inspection made after 10000 EOH by boroscope of the hot section showed that the combustor was in good condition. This paper presents some details of the design work carried out during the development of the combustor design enhancement and the combustion operation experience from the first units.


Sign in / Sign up

Export Citation Format

Share Document