scholarly journals Gas Turbine Operation Under Long Term PFB Conditions

Author(s):  
Ralph R. Boericke

A key issue in pressurized fluidized bed combustion (PFBC) is the durability of the gas turbine when operated on combustion gases containing coal ash, attrited sorbent bed material, and corrosive alkali compounds. The tolerance of industrial gas turbines to erosion by dust particles has been estimated based on data from a variety of sources which are reviewed briefly in this paper. It is shown, based on experimental data, that conventional cyclones can remove sufficient dust particles to meet the projected turbine erosion tolerance. In addition, advanced clean-up devices under development by the U.S. Department of Energy which would effectively remove gas turbine erosion as an issue in PFBC are described. An overview of ongoing materials work is presented which summarizes recent experimental results and assesses the suitability of existing and new turbine alloys to survive this environment. Particular attention is given to a PFB Long Term Materials Test currently in progress which will demonstrate materials corrosion resistance for exposure times up to 14,000 hr. Preliminary results from this test are discussed.

1982 ◽  
Vol 104 (2) ◽  
pp. 429-438 ◽  
Author(s):  
M. B. Cutrone ◽  
M. B. Hilt ◽  
A. Goyal ◽  
E. E. Ekstedt ◽  
J. Notardonato

The work described in this paper is part of the DOE/LeRC Advanced Conversion-Technology Project (ACT). The program is a multiple contract effort with funding provided by the Department of Energy, and technical program management provided by NASA LeRC. Combustion tests are in progress to evaluate the potential of seven advanced combustor concepts for achieving low NOx emissions for utility gas turbine engines without the use of water injection. Emphasis was on the development of the required combustor aerothermodynamic features for burning high nitrogen fuels. Testing was conducted over a wide range of operating conditions for a 12:1 pressure ratio heavy-duty gas turbine. Combustors were evaluated with distillate fuel, SRC-II coal-derived fuel, residual fuel, and blends. Test results indicate that low levels of NOx and fuel-bound nitrogen conversion can be achieved with rich-lean combustors for fuels with high fuel-bound nitrogen. In addition, ultra-low levels of NOx can be achieved with lean-lean combustors for fuels with low fuel-bound nitrogen.


Author(s):  
D. Anson ◽  
W. J. Sheppard ◽  
W. P. Parks

A development thrust for the adoption of ceramic components in industrial gas turbines, now being sponsored by the U.S. Department of Energy, may have a considerable impact on the growth rate and ultimate capacity of the cogeneration sector. The economic justification for cogeneration rests on the ability to undercut the cost of purchased power after taking credit for the useful heat recovery, and it is frequently marginal after consideration of fuel, maintenance, and pollution control devices. After reviewing briefly the factors contributing to the economic viability of cogeneration systems, this paper presents arguments to show how the use of ceramics in industrial gas turbine can be instrumental in reducing installation and operating costs. Improved gas turbines based on ceramic materials technology also will provides means for meeting environmental protection requirements without the use of back end flue gas treatment, and will be able to utilize byproduct industrial gaseous and liquid fuels more effectively. These improvements can increase substantially the economic return from cogeneration systems, and are expected to result in increased cogeneration capacity and a sustained market for industrial gas turbines. Predictions are made of the size of the U.S. industrial gas turbine cogeneration market. The annual fuel savings resulting from displacement of utility generation capacity could amount to 2 × 1017 joules (2 × 1014 Btu’s) by the year 2010.


2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


Author(s):  
Philip H. Snyder ◽  
M. Razi Nalim

Renewed interest in pressure gain combustion applied as a replacement of conventional combustors within gas turbine engines creates the potential for greatly increased capability engines in the marine power market segment. A limited analysis has been conducted to estimate the degree of improvements possible in engine thermal efficiency and specific work for a type of wave rotor device utilizing these principles. The analysis considers a realistic level of component losses. The features of this innovative technology are compared with those of more common incremental improvement types of technology for the purpose of assessing potentials for initial market entry within the marine gas turbine market. Both recuperation and non-recuperation cycles are analyzed. Specific fuel consumption improvements in excess of 35% over those of a Brayton cycle are indicated. The technology exhibits the greatest percentage potential in improving efficiency for engines utilizing relatively low or moderate mechanical compression pressure ratios. Specific work increases are indicated to be of an equally dramatic magnitude. The advantages of the pressure gain combustion approach are reviewed as well as its technology development status.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


1995 ◽  
Vol 117 (2) ◽  
pp. 245-250 ◽  
Author(s):  
K. Nakakado ◽  
T. Machida ◽  
H. Miyata ◽  
T. Hisamatsu ◽  
N. Mori ◽  
...  

Employing ceramic materials for the critical components of industrial gas turbines is anticipated to improve the thermal efficiency of power plants. We developed a first-stage stator vane for a 1300°C class, 20-MW industrial gas turbine. This stator vane has a hybrid ceramic/metal structure, to increase the strength reliability of brittle ceramic parts, and to reduce the amount of cooling air needed for metal parts as well. The strength design results of a ceramic main part are described. Strength reliability evaluation results are also provided based on a cascade test using combustion gas under actual gas turbine running conditions.


1987 ◽  
Vol 109 (3) ◽  
pp. 325-330 ◽  
Author(s):  
C. L. Spiro ◽  
S. G. Kimura ◽  
C. C. Chen

Chemical and physical transformations of coal ash during combustion and deposition in gas turbine environments have been studied. Extensive characterization of the coal-water mixture fuel and deposits obtained on deposition pins and turbine nozzle vanes has been performed. The behavior of alkali metals has been found to be much different from that for petroleum fuels, resulting in lower than expected deposition and probable reduced corrosion rates.


Author(s):  
Marcin Bielecki ◽  
Salvatore Costagliola ◽  
Piotr Gebalski

The paper deliberates vibration limits for non-rotating parts in application to industrial gas turbines. As a rule such limits follow ISO 10816-4 or API616, although in field operation it is not well known relationship between these limits and failure modes. In many situations, the reliability function is not well-defined, and more comprehensive methods of determining the harmful effects of support vibrations are desirable. In the first part, the undertaken approach and the results are illustrated based on the field and theoretical experience of the authors about the failure modes related to alarm level of vibrations. Here several failure modes and diagnostics observations are illustrated with the examples of real-life data. In the second part, a statistical approach based on correlation of support vs. shaft vibrations (velocity / displacement) is demonstrated in order to assess the risk of the bearing rub. The test data for few gas turbine models produced by General Electric Oil & Gas are statistically evaluated and allow to draw an experimentally based transfer function between vibrations recorded by non-contact and seismic probes. Then the vibration limit with objectives like bearing rub is scrutinized with aid of probabilistic tools. In the third part, the attention is given to a few examples of the support vibrations — among other gas turbine with rotors supported on flexible pedestals and baseplate. Here there is determined a transfer coefficient between baseplate and bearing vibrations for specific foundation configurations. Based on the test data screening as well as analysis and case studies thereof, the conclusions about more specific vibration limits in relation to the failure modes are drawn.


Sign in / Sign up

Export Citation Format

Share Document