Condition Monitoring at Bulls Bridge Power Station

Author(s):  
K. N. Addrison ◽  
M. L. G. Hill

The Station chosen for the trial was Bulls Bridge Gas Turbine Station, sited near London Airport. (See Fig 1-1). Bulls Bridge contains 4, 70 MW sets; each 70 MW unit being powered by 4 Industrial Olympus gas generators, two at either end of a central alternator, (See Fig 1-2). At each end of the alternator, power is supplied via a clutch, to a shaft on which is mounted two power turbines, each driven by a single Olympus gas generator. Thus gas paths are separate between intake and final exhaust, and therefore each gas generator/power turbine assembly can be analysed without being unduly affected by associated plant.

Author(s):  
C. Austin

This paper outlines the major design considerations and development experience of a 12,500-hp dual-shaft gas turbine. The unit uses an aircraft derivative gas turbine as the gas generator and is designed to operate in an attended or unattended station without external electrical power above 60 per cent of design speed. Proven power turbine design concepts were combined with the advantages of a variety of highly developed gas generators to produce a reliable machine which could be introduced with a minimum of development time. A special test facility was constructed to subject the unit to a full load test under conditions which simulated field operation.


Author(s):  
M. Nakhamkin ◽  
E. C. Swensen ◽  
Arthur Cohn

This paper describes the first phase of an intended project to develop a reheat combustor-power turbine (RCPT) package which when added to an aircraft derivative gas generator would produce a commercially attractive reheat gas turbine for combined cycle and cogeneration applications. This first phase includes the identification of gas generators and establishes the relative merits of the RCPT package at various inlet temperatures based upon evaluated benefits. Our calculations show that in combined cycle application with the RCPT at an easily feasible power turbine inlet temperature of 1700°F, the steam flow increases by approximately 2.5 times, the combined cycle power by about 30%, and the combined cycle efficiency by about 5% compared to an unfired aeroderivative combined cycle. Compared to the duct fired combined cycle with the same power output, the efficiency increases by approximately 7.5%, leading to a lower cost of electricity of about 10 per cent for the economic assumptions of the study.


Author(s):  
Deepak Thirumurthy ◽  
Jose Carlos Casado Coca ◽  
Kanishka Suraweera

Abstract For gas turbines with free power turbines, the capacity or flow parameter matching is of prime importance. Accurately matched capacity enables the gas turbine to run at its optimum conditions. This ensures maximum component efficiencies, and optimum shaft speeds within mechanical limits. This paper presents the challenges, uncertainties, and opportunities associated with an accurate matching of a generic two-shaft aeroderivative HP-LP gas generator with the free power turbine. Additionally, generic performance trends, uncertainty quantification, and results from the verification program are also discussed. These results are necessary to ensure that the final free power turbine capacity is within the allowable range and hence the product meets the performance guarantees. The sensitivity of free power turbine capacity to various design variables such as the vane throat area, vane trailing edge size, and manufacturing tolerance is presented. In addition, issues that may arise due to not meeting the target capacity are also discussed. To conclude, in addition to design, analysis, and statistical studies, a system-of-systems approach is mandatory to meet the allowed variation in the free power turbine capacity and hence the desired gas turbine performance.


Author(s):  
Bruce D. Thompson ◽  
Jurie Grobler

Although generally reliable in-service and with an ever increasing mean time between removal, it was identified in the mid to late 1980’s that the LM2500 gas turbine in US Navy service had a problem with self generated vibration; this was principally due to imbalance in the gas generator or power turbine rotor, however, other non-synchronous sources for vibration were discovered to be important as well. The initial method for resolving this problem was to remove and repair, at a depot, the engines that exceeded the in-service alarm level. This turned out to be a very expensive approach and it was found that most engines that had excessive vibration levels in other respects (performance, etc.) were perfectly acceptable for continued use without repair. Raising the vibration alarm level was tried for a time. However, it became clear that prolonged engine operation with higher levels of vibration were detrimental to the mechanical integrity of the engine. This paper discusses the systematic approach developed to reduce LM2500 self generated vibration levels. This included monitoring system improvements, engine design & hardware improvements and the development and implementation of in-place trim balance. This paper also discusses some of the analysis and practical difficulties encountered reducing and maintaining low LM2500 vibration levels through trim balance and by other means. Also discussed is the present implementation of remotely monitoring LM2500 operating parameters, in particular vibration, through the Integrated Performance Analysis Reports (IPAR) and the Maintenance Engineering Library Server (MELS).


Author(s):  
E. J. Gunter ◽  
D. F. Li ◽  
L. E. Barrett

This paper presents a dynamic analysis of a two-spool gas turbine helicopter engine incorporating intershaft rolling element bearings between the gas generator and power turbine rotors. The analysis includes the nonlinear effects of a squeeze film bearing incorporated on the gas generator rotor. The analysis includes critical speeds and forced response of the system and indicates that substantial dynamic loads may be imposed on the intershaft bearings and main bearing supports with an improperly designed squeeze film bearing. A comparison of theoretical and experimental gas generator rotor response is presented illustrating the nonlinear characteristics of the squeeze film bearing. It was found that large intershaft bearing forces may occur even though the engine is not operating at a resonant condition.


1988 ◽  
Vol 110 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Guiming Ji ◽  
Zengxiang Tan ◽  
Mingchang Zhang

Based on the aerodynamic design and development of a power turbine for an aircraft derivative marine gas turbine in our engineering practice and taking account of the specific features of a marinization effort, this paper describes the design approach and aerodynamic characteristics of the said power turbine, including parameter selection, design methodology, comparison of flow calculation results obtained by simple radial equilibrium and full radial equilibrium method, and a versatile design of the power turbine capable of rendering two power ratings. Also described is the use of variable geometry stator blades to accommodate a small amount of adjustment to the gas generator outlet parameters.


Author(s):  
Joe S. Taylor

This paper presents how a major U.S. gas transmission and storage company restored gas storage peaking capacity by repowering obsolete gas turbine compressor units. Consumers Power Company’s Ray Field located in Macomb County, Michigan, USA, was developed as a 44 BCF working capacity gas storage field in 1966. Due to the high deliverability, the field is operated as a peaking reservoir, handling rates as high as 500 MMCFD on injection and 1,200 MMCFD on withdrawal. Ten (10) 2,750 horsepower gas turbine driven 4-stage centrifugal compressor units were installed in the mid to late 1960’s at the field. The compression is operated 2, 4 and 8 stage, as needed, to cover storage pressures of 450 to 1800 psig. Each centrifugal compressor is driven by a Pratt Whitney (PW) GG-12 Gas Generator firing into a Cooper-Bessemer (CB) RT-27 Power Turbine. By 1980 parts and maintenance services for the PW GG-12 Gas Generator became very expensive to non-existent. Aircraft use of the GG-12 (JT-12) had been phased out. Consumers Power, with 13 of these turbines on their system, was becoming the only remaining user. In the mid 1980’s four (4) of the Ray Field gas turbine compressor units were replaced with two (2) 6,000 horsepower reciprocating engine compressor units. These replacements maintained the deliverability of the field and provided salvageable engines and other parts to maintain the six (6) remaining turbines. However, by 1993 maintenance parts returned as a major problem as well as unit availability on the 6 remaining turbine units. In 1994 Consumers Power committed to a gas turbine unit repowering program as the preferred choice over unit replacement. Two (2) refurbished Solar Centaur T4500 Gas Turbine drives were purchased and installed to repower 2 of the obsolete turbine units. These installations have been very successful. Existing compressors, foundations, piping, coolers and auxiliary systems were re-used with only minor modification. The complete installed cost for repowering was about 33% of the cost experienced for replacement. Installation was completed within eight (8) months of project commitment. The low emission rates from the Solar SoLoNOx Combustors allowed short lead time (6 months) on air emissions permit. New sound attenuation enclosures met the new local noise ordinance and replaced equipment that had been a source of local complaint. PLC based controls improved reliability and flexibility of operation. The additional horsepower available from the T4500 Turbine (4,300 vs 2,750) allows for increased future capacity. Because of the success of the Ray Turbine Repowering Project, Consumers Power has committed to 2 more refurbished Solar Centaur T4500 Units to repower PW/CB Turbines at the St Clair Compressor Station. Solar is scheduled to delivery these 2 units by year-end 1995 for installation in 1996.


2019 ◽  
Author(s):  
Nima Zamani Meymian ◽  
Hossein Rabiei

In the paper, the effect of gas generator turbine blades’ geometrical change has been studied on the overall performance of a twin-shaft 25MW gas turbine with industrial application, under dynamic conditions. Geometrical changes include change of thickness and height of gas generator turbine blades which in turn would result in the change in the mass flow rate of passing hot gas, as well as isentropic efficiency in each stage of the turbine. Gas turbine modeling in the paper is zero-dimensional and takes place with consideration of dynamic effects of volume on air compressor components, combustion chamber, gas generator turbine, power turbine, fuel system, as well as effects of heat transfer dynamics between blades, gas path, and effects of operators on inlet guide vanes, fuel valves, and air compressor discharge valve. In the mathematical model of each of the components, steady-state characteristics curves have been used, extracted from 3-Dimensional computational fluid dynamics (CFD). To do so, characteristic curves of the first and second stages of the four-stage turbine have been updated through 3-D fluid dynamic analysis so that the effect of geometrical changes in turbine blades would be applied. Results from effects of these changes on characteristics of transient gas flow including output power of gas generator turbine and power turbine, inlet and outlet temperatures of turbine stages, as well as air and fuel mass flow rates have been provided from the start-ups until reaching the nominal load would be achieved.


Author(s):  
Jack Janes

Clearly, the advanced gas turbine has center stage in the world for converting fuel to work. The power and efficiency delivered by the advanced gas turbine have made it the predominant prime mover in the air, and increasingly so on land and sea. This paper explores the full potential offered for marine applications by the advanced gas turbine, a potential that is fully enhanced by use of available engineering options that are external to the gas generator. The enhancement options are: 1) intercooling 2) thermal recuperation 3) steam injection 4) reheat 5) closed loop cooling 6) catalytic partial oxidation 7) water recovary. Of the options studied reheat involves a unique approach. Reheat is postulated to be accomplished with a new simplified technique. An autoignitable hydrogen-rich fuel is injected into the air path through the cooling passages and from the trailing edge of blades and vanes of the law pressure turbine, reheating the air prior to entry into the free power turbine.


Author(s):  
Aldo Prario ◽  
Heinrich Voss

This paper describes the FT8A, an advanced state of the art, high performance aeroderivative gas turbine under development for variable speed mechanical drive industrial applications. The gas generator, common to the recently developed FT8, is derived from the Pratt & Whitney JT8D-200 series aircraft engine. The power turbine is being designed and developed by Turbo Power and Marine Systems, Inc. (TPM) and MAN Gutehoffnungshütte AG (MAN GHH) under a joint collaboration program. The power turbine features a three stage rotor simply supported between antifriction bearings, advanced aerodynamics, and a low loss exhaust diffuser/collector system. Design features, performance and typical applications of the FT8A are presented.


Sign in / Sign up

Export Citation Format

Share Document