Development of Injection-Molded Gas Turbine Components: Investigation Into Toughening GTE PY6 Si3N4

Author(s):  
D. Sordelet ◽  
J. Neil ◽  
M. Mahoney ◽  
A. Hecker

GTE Laboratories has been supporting Allison Gas Turbine Division of General Motors under the current ATTAP program since early 1988. Injection-molding process development and component fabrication has been the emphasis of this effort, but material property enhancement studies have also been an important complement. Attempts to increase the resistance to foreign object damage have been made through parallel investigations of microstructural control and SiC whisker reinforcement. The research activities aimed at improving fracture toughness of GTE PY6 Si3N4 are discussed.

Author(s):  
R. W. Ohnsorg ◽  
G. V. Srinivasan

Sintered α-SiC (Hexoloy® SA*) turbine engine components have been fabricated by Carborundum for the Advanced Gas Turbine (AGT) Program and, more recently, for the Advanced Turbine Technology Applications Project (ATTAP) using three primary forming procedures — injection molding, cold isostatic pressing (CIP) followed by green machining, and slip casting. The near net-shape fabrication of injection molded AGT-100 radial rotors for the Allison Gas Turbine Division (AGTD) of General Motors Corporation and, more recently, AGT-5 axial rotors, has been demonstrated. The current emphasis at Carborundum is to refine the injection molding process, bringing it to a performance and reproducibility level sufficient for production needs. The process changes leading to increases in component strength from approximately 380 MPa (55 ksi) to 595 MPa (86 ksi) will be discussed, as well as investigation of the failure mechanism and proposed process modifications to enhance properties even further.


2006 ◽  
Vol 326-328 ◽  
pp. 187-190
Author(s):  
Jong Sun Kim ◽  
Chul Jin Hwang ◽  
Kyung Hwan Yoon

Recently, injection molded plastic optical products are widely used in many fields, because injection molding process has advantages of low cost and high productivity. However, there remains residual birefringence and residual stresses originated from flow history and differential cooling. The present study focused on developing a technique to measure the birefringence in transparent injection-molded optical plastic parts using two methods as follows: (i) the two colored laser method, (ii) the R-G-B separation method of white light. The main idea of both methods came from the fact that more information can be obtained from the distribution of retardation caused by different wavelengths. The comparison between two methods is demonstrated for the same sample of which retardation is up to 850 nm.


2015 ◽  
Vol 11 (2) ◽  
pp. 238-272 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
Ramin Yavari ◽  
S. Ramaswami ◽  
Rohan Galgalikar

Purpose – The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question. Design/methodology/approach – Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials. Findings – The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed. Originality/value – To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.


2012 ◽  
Vol 629 ◽  
pp. 55-59
Author(s):  
Ai Yun Jiang ◽  
Jing Chao Zou ◽  
Bao Feng Zhang ◽  
Hai Hong Wu

For conductive-carbon-fiber-filled polymer composites, the residual stresses developed during injection molding process may affect not only the molding’s conductive property, but its dimensional stability as well. In order to improve the conductivity of the molding fabricated with this kind of composites, we investigated, using layer removal method, the distribution of the residual stresses of injection-molded conductive-carbon-fiber-filled polypropylene in this paper. The residual stresses were obtained under the actions of different processing conditions. Our results indicate that processing pressures have more significant effects on the residual stresses at the skin areas than the core areas of the sample because of fiber orientation. The tensile stresses of the molding at the core areas drop under the action of packing pressure, but the compressive stresses at the skin areas increase. The results reveal that the action of packing pressure may decrease the anisotropy of the residual stresses in the molding.


2017 ◽  
Vol 728 ◽  
pp. 258-263
Author(s):  
Badin Pinpathomrat ◽  
Suchalinee Mathurosemontri ◽  
Supaphorn Thumsorn ◽  
Hiroyuki Hamada

Aim of this study focused on insert injection molding process, which is molded the melted polymer around an inserted part placed in the molded cavity of injection molding process. The interfacial adhesive strength between the inserted and an injected polymer parts were investigated by Intron universal test machine in order to investigate the effect of material in inserted and injected part. During tensile testing the acoustic emissions (AE) measurement was applied to evaluate the fracture behavior of insert injection molding. It was found that interfacial adhesive strength of insert injection molded of all specimens increased according with increasing the bonding area of adhesive interface. The fracture mode of the insert injection molded specimens was depended on the length of bonding area of the inserted part. The fracture of mode of the insert-injection molded specimens was confirmed by acoustic emission.


Author(s):  
D. N. Cardwell ◽  
K. S. Chana ◽  
M. T. Gilboy

This paper details the development of a prototype in-flight foreign object damage (FOD) detection system through various stages, resulting in a system capable of detecting objects as small as one gram (1g) mass. The system comprises an eddy current sensor based tip timing system and acoustic emissions vibration sensors controlled through a digital signal processor (DSP). QinetiQ have developed light weight, contamination-immune eddy current tip timing sensors for use in engine health management. Engine tests confirmed these sensors’ potential for detecting FOD events. FOD detection algorithms were developed and implemented in a prototype DSP that was built and tested on an uninstalled gas turbine engine. The trials showed that the prototype DSP FOD detection system could detect dynamic FOD events at full engine speed. Further work was carried out to enhance the FOD detection system, overcoming limitations in the previous system through the implementation of enhanced algorithms and its extension to accept four eddy current sensor inputs as well as a vibration signal input from an acoustic emissions (AE) sensor. An algorithm that computes engine speed from the tip timing data was also implemented to alleviate the need for a separate 1/rev signal. A number of engine trials were successfully completed in order to validate the system. The speed algorithm has been successfully validated on engine trials and comparisons with a conventional optical based 1/rev showed the DSP-generated 1/rev signals to be almost identical to the conventional system. Typically, the error was in the region of 0.03% speed. The investigations culminated in a test series designed to ascertain the system’s sensitivity to foreign object impacts. These demonstrated that the system was capable of detecting objects down to one gram (1g) mass introduced at low speed into the engine intake.


2012 ◽  
Vol 468-471 ◽  
pp. 1013-1016 ◽  
Author(s):  
Hua Qing Lai

Molding is one of the most versatile and important processes for manufacturing complex plastic parts. It is a method of fabricating plastic parts by utilizing a mold or cavity that has a shape and size similar to the part being produced. Molten polymer is injected into the cavity, resulting in the desired part upon solidification. The injection-molded parts typically have excellent dimensional tolerance and require almost no finishing and assembly operations. But new variations and emerging innovations of conventional injection molding have been continuously developed to offer special features and benefits that cannot be accomplished by the conventional injection molding process. This study aims to improving the life of stereolithography injection mold.


Author(s):  
Sung R. Choi ◽  
Zsolt Rácz

Foreign object damage (FOD) phenomena of two gas-turbine grade silicon nitrides (AS800 and SN282) were assessed at ambient temperature applying impact velocities from 20 to 300 m/s using 1.59-mm diameter hardened steel ball projectiles. Targets in a flexural configuration with two different sizes (thicknesses) of 1 and 2 mm were ballistic-impacted under a fully supported condition. The severity of impact damage, as well as the degree of post-impact strength degradation, increased with increasing impact velocity, increased with decreasing target size, and was greater in SN282 than in AS800 silicon nitride. The critical impact velocity where targets fractured catastrophically decreased with decreasing target size and was lower in SN282 than in AS800. Overall, FOD by steel projectiles was significantly less than that by silicon-nitride ceramic counterparts, due to much decreased Hertzian contact stresses. A correlation of backside cracking velocity versus target size was made based on a simplified elastic foundation analysis.


Sign in / Sign up

Export Citation Format

Share Document