scholarly journals Aspects of Flame Stability in a Research Dump Combustor

Author(s):  
G. J. Sturgess ◽  
P. O. Hedman ◽  
D. G. Sloan ◽  
D. Shouse

The lean blowout process is studied in a simplified, nominally diffusion flame research combustor that incorporates the essential features of the combustor primary zone for an aircraft gas turbine engine. The research combustor is provided with extensive optical access. To investigate the blowout, a variety of diagnostic techniques are employed, including direct flame observation, laser-Doppler anemometry, spontaneous OH-imaging, thin-filament pyrometry, laser-induced fluorescence OH-imaging, coherent anti-Stokes Raman spectroscopy, and computational fluid dynamics. Lean blowouts in the research combustor are related to well-stirred reactor blowout. A blowout sequence is found to initiated by the loss of a key flame structure in the form of an attached pilot flame. The behavior of this attached flame is investigated. It is concluded that a major contribution to the existence of the attached flame is near-field, non-stationary radial transport of reactants directly into the recirculation zone, rather than by mean flow recirculation of hot products. “Lift” of the attached flame is the reason that lean blowout in the research combustor is related to well-stirred reactor blowout since it allows at least partial premixing of reactants to take place.

2006 ◽  
Author(s):  
Lasse A. Rosendahl ◽  
Xiaopeng Wang ◽  
Christian B. Jacobsen

In the present work, the mean flow field in a stirred tank equipped with a scale model of a commercially available Grundfos AFG.40.230.35 flowmaker is investigated using CFD simulation and Laser Doppler Anemometry (LDA), in order to provide information on the interaction between flow, propeller and wall proximity. The propeller is placed at a specified location in the tank, and measurements are taken at various locations in the tank to provide as detailed a representation of the resulting flow as possible as well as insight into the near-field of the flowmaker. The simulation, carried out with Ansys CFX 10, used a multiple frame of reference (MFR) approach to include a full representation of the flowmaker blade and motor geometry, to fully include the effects of the blade shape and variable pitch. The reported results are based on a k-e model using a second order discretization scheme. The results show good agreement on downstream axial velocities immediately after the flowmaker, although the numerical results exhibit symmetry to a greater extent than the experimental data, which is believed to be due to a combination of wall proximity effects in the latter and the turbulence model in the latter. However, the results provide valuable insight into the performance of CFD analysis on this type of flow maker, and highlight aspects for future work.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


2018 ◽  
Vol 858 ◽  
pp. 634-655 ◽  
Author(s):  
Jian Zhou ◽  
Subhas K. Venayagamoorthy

The time-averaged flow dynamics of a suspended cylindrical canopy patch with a bulk diameter of $D$ is investigated using large-eddy simulations (LES). The patch consists of $N_{c}$ constituent solid circular cylinders of height $h$ and diameter $d$, mimicking patchy vegetation suspended in deep water ($H/h\gg 1$, where $H$ is the total flow depth). After validation against published data, LES of a uniform incident flow impinging on the canopy patch was conducted to study the effects of canopy density ($0.16\leqslant \unicode[STIX]{x1D719}=N_{c}(d/D)^{2}\leqslant 1$, by varying $N_{c}$) and bulk aspect ratio ($0.25\leqslant AR=h/D\leqslant 1$, by varying $h$) on the near-wake structure and adjustment of flow pathways. The relationships between patch geometry, local flow bleeding (three-dimensional redistribution of flow entering the patch) and global flow diversion (streamwise redistribution of upstream undisturbed flow) are identified. An increase in either $\unicode[STIX]{x1D719}$ or $AR$ decreases/increases/increases bleeding velocities through the patch surface area along the streamwise/lateral/vertical directions, respectively. However, a volumetric flux budget shows that a larger $AR$ causes a smaller proportion of the flow rate entering the patch to bleed out vertically. The global flow diversion is found to be determined by both the patch geometrical dimensions and the local bleeding which modifies the sizes of the patch-scale near wake. While loss of flow penetrating the patch increases monotonically with increasing $\unicode[STIX]{x1D719}$, its partition into flow diversion around and beneath the patch shows a non-monotonic dependence. The spatial extents of the wake, the flow-diversion dynamics and the bulk drag coefficients of the patch jointly reveal the fundamental differences of flow responses between suspended porous patches and their solid counterparts.


Author(s):  
H. Iacovides ◽  
D. C. Jackson ◽  
H. Ji ◽  
G. Kelemenis ◽  
B. E. Launder ◽  
...  

This paper reports laser Doppler anemometry (LDA) and wall pressure measurements of turbulent flow in a square-sectioned, rotating U-bend typical of coolant passages employed in modern gas turbine blades. In the upstream and downstream tangents, the pressure and suction (inner and outer) surfaces are roughened with discrete square-sectioned ribs in a staggered arrangement for a rib-height to duct-diameter ratio of 0.1. Three cases have been examined at a passage Reynolds number of 105: a stationary case; a case of positive rotation (the pressure side coinciding with the outer side of the U-bend) at a rotation number (Ro=ΩD/Um) of 0.2; and a case of negative rotation at Ro=−0.2. Measurements have been obtained along the symmetry plane of the duct. In the upstream section, the separation bubble behind each rib is about 2.5 rib-heights long. Rotation displaces the high momentum fluid towards the pressure side, enhances turbulence along the pressure side and suppresses turbulence along the suction side. The introduction of ribs in the straight sections reduces the size of the separation bubble along the inner wall of the U-bend, by raising turbulence levels at the bend entry; it also causes the formation of an additional separation bubble over the first rib interval along the outer wall, downstream of the bend exit. Rotation also modifies the mean flow development within the U-bend, with negative rotation speeding up the flow along the inner wall and causing a wider inner-wall separation bubble at exit. Turbulence levels within the bend are generally increased by rotation and, over the first two diameters downstream of the bend, negative rotation increases turbulence while positive rotation on the whole has the opposite effect.


1993 ◽  
Vol 37 (01) ◽  
pp. 16-24
Author(s):  
J. Longo ◽  
F. Stern ◽  
Y. Toda

Part 2 of this two-part paper presents additional results from a towing-tank experiment conducted in order to explicate the influence of wavemaking by a surface-piercing body on its boundary-layer and wake and provide detailed documentation of the complete flow field appropriate for validating computational methods. In Part 1 (Journal of Ship Research, Dec. 1992), wave profile, local and global wave-elevation, and mean-velocity and pressure field measurements for Froude numbers 0.16 and 0.316 for a 3.048 m Series 60 CB = 0.6 hull form are presented and discussed to point out the essential differences between the flows at low and high Froude number and to assess the nature of the interaction between wavemaking and the boundary layer and wake. In Part 2, scale effects on the near-field wave patterns are examined through wave profile and local and global wave-elevation measurements for 1.829 and 3.048 m models and Froude numbers 0.316, 0.3, and 0.25. The bow-wave amplitude and divergence angle are larger and the stern waves smaller for the smaller model. The latter scale effect is well known, but the former one is a new and unexpected result. Also, comparisons are made between the experimental results and those from a wavy inviscid-flow method, which provides an evaluation of the capabilities of the computational method. Although the computations predict the gross features of the wave system and velocity and pressure fields, they do not simulate the complex details of either the wave system or the flow field, especially close to the hull and wake centerplane.


2019 ◽  
Vol 80 (11) ◽  
pp. 2117-2130
Author(s):  
Ivan Matías Ragessi ◽  
Carlos Marcelo García ◽  
Santiago Márquez Damián ◽  
Cecilia Pozzi Piacenza ◽  
Mariano Ignacio Cantero

Abstract This paper presents a detailed characterization of turbulence in the incoming flow to the clarification component of a water treatment plant, ‘Los Molinos’ (Córdoba, Argentina). The main problems were related to the presence of turbulent flow patterns throughout the treatment, affecting the proper development of the physical processes required for water clarification. Namely: (a) a poor hydraulic design that could produce a non-homogeneous spatial distribution of the flow, recirculation zones and flow stagnation, and a non-uniform discharge distribution among the sedimentation units as a result of different cross-sectional dimensions of the transverse-channel, and (b) high turbulence intensity that affect the flocs' size as well as the efficiency of the settling tanks and filters. Firstly, a detailed in-situ experimental characterization of the turbulent flow was undertaken. An acoustic Doppler velocimeter (ADV) was used to characterize the flow turbulence, whereas for discharge measurements and mean flow velocity field an acoustic Doppler current profiler (ADCP) was employed. Secondly, a numerical model, based on the Reynolds-averaged Navier–Stokes (RANS) equations and the - turbulence closure model, was validated with the experimental data. Finally, based on the results, a diagnosis and recommendations were made for the optimization of the hydraulic design of the water treatment plant.


1982 ◽  
Vol 116 ◽  
pp. 123-156 ◽  
Author(s):  
T. R. Troutt ◽  
D. K. Mclaughlin

An experimental investigation of the flow and acoustic properties of a moderate-Reynolds-number (Re = 70000), Mach number M = 2·1, axisymmetric jet has been performed. These measurements extended the experimental studies conducted previously in this laboratory to a higher-Reynolds-number regime where the flow and acoustic processes are considerably more complex. In fact, mean-flow and acoustic properties of this jet were determined to be closely comparable to published properties of high-Reynolds-number jets.The major results of the flow-field measurements demonstrate that the jet shear annulus is unstable over a broad frequency range. The initial growth rates and wavelengths of these instabilities as measured by a hot wire were found to be in reasonable agreement with linear stability theory predictions. Also, in agreement with subsonic-jet results, the potential core of the jet was found to be most responsive to excitation at frequencies near a Strouhal number of S = 0·3. The overall development of organized disturbances around S = 0·2 seems to agree in general with calculations performed using the instability theory originally developed by Morris and Tam.The acoustic near field was characterized in terms of sound-pressure level and directivity for both natural and excited (pure-tone) jets. In addition, propagation direction and azimuthal character of dominant spectral components were also measured. It was determined that the large-scale flow disturbances radiate noise in a directional pattern centred about 30° from the jet axis. The noise from these disturbances appears from simple ray tracing to be generated primarily near the region of the jet where the coherent fluctuations saturate in amplitude and begin to decay. It was also determined that the large-scale components of the near-field sound are made up predominately of axisymmetric (n = 0) and helical (n = ±1) modes. The dominant noise-generation mechanism appears to be a combination of Mach-wave generation and a process associated with the saturation and disintegration of the large-scale instability. Finally, the further development of a noise-generation model of the instability type appears to hold considerable promise.


Author(s):  
Abdul A. Jaafar ◽  
Fariborz Motallebi ◽  
Michael Wilson ◽  
J. Michael Owen

In this paper, new experimental results are presented for the flow in a co-rotating disc system with a rotating inner cylinder and a stationary stepped outer casing. The configuration is based on a turbine disc-cooling system used in a gas turbine engine. One of the rotating discs can be heated, and cooling air is introduced through discrete holes angled inward at the periphery of this disc. The cooling air leaves the system through axial clearances between the discs and the outer casing. Some features of computed flows, and both measured and computed heat transfer, were reported previously for this system. New velocity measurements, obtained using Laser Doppler Anemometry, are compared with results from axisymmetric, steady, turbulent flow computations obtained using a low-Reynolds-number k-ε turbulence model. The measurements and computations show that the tangential component of velocity is invariant with axial location in much of the cavity, and the data suggest that Rankine (combined free and forced) vortex flow occurs. The computations fail to reproduce this behaviour, and there are differences between measured and computed details of secondary flow recirculations. Possible reasons for these discrepancies, and their importance for the prediction of associated heat transfer, are discussed.


1992 ◽  
Vol 114 (4) ◽  
pp. 776-782 ◽  
Author(s):  
M. R. Baxter ◽  
A. H. Lefebvre

Weak extinction data obtained from an experimental apparatus designed to simulate the characteristics of practical afterburner combustion systems are presented. The apparatus supplies mixtures of varied composition (equivalence ratio and degree of vitiation), temperature and velocity to Vee-gutter flame holders of various widths and shapes similar to those found in jet engine systems. The fuel employed is a liquid hydrocarbon whose chemical composition and physical properties correspond to those of aviation kerosine, JP5. An equation for predicting weak extinction limits which accounts for upstream vitiation and the chemical characteristics of the fuel is derived from stirred reactor theory. The correlation between the predictions and experimental results indicates that the stirred reactor approach can provide a framework for predicting the lean blowout limits of practical flameholders over wide ranges of engine operating conditions.


Sign in / Sign up

Export Citation Format

Share Document