Numerical Simulation of the Internal Flow of a New-Type Shaft Tubular Pumping System

Author(s):  
Honggeng Zhu ◽  
Longyang Dai ◽  
Rentian Zhang ◽  
Guoxian Zhu ◽  
Linbi Yao ◽  
...  

The structural features of a pumping system will directly affect the investment of the pumping station and its pumping efficiency. In the design and construction of low head or extra-low head pumping stations, bulb tubular pumping system and shaft tubular pumping system are widely adopted. So far all the 5 large tubular pumping stations finished or under construction took the form of rear type bulb tubular pumping system (bulb is arranged inside the discharge passage) in China’s Eastern Route Project of South-to-North Water Diversion. However, front type shaft tubular pumping systems (shaft is arranged inside the suction box) are more widely used in city flood-control pumping stations, which are characteristic of large amounts and medium or small scale. To improve the reliability of city flood-control pumping stations, the authors have invented a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker valve as the cutoff device, which is possessed of such advantages as simpler structure, reliable cutoff and better energy performance. Taking an real pumping station in Yancheng city of China as an example, the computational fluid dynamics method was adopted in this paper to simulate the three dimensional turbulent flow of a model new-type tubular pumping system (impeller diameter D = 0.3m, rotational speed n = 1100r/min and specific speed ns is about 1500) and predict its performance, to improve the pumping system efficiency through hydraulic design optimization. Computation results show that the efficiency of the new-type shaft tubular pumping system reached 56.0% when the design head and discharge are 1.15m and 0.326m3/s respectively, and up to 68.8% when the maximum head and relevant discharge are 1.95m and 0.296m3/s respectively, having more extensive foreground for low-head, especially extra-low-head city flood-control pumping stations.

2014 ◽  
Vol 11 (6) ◽  
pp. 627-634
Author(s):  
Rentian Zhang ◽  
Longhua Li ◽  
Honggeng Zhu ◽  
Linbi Yao ◽  
Wei Shi

There are three pumping stations in the first stage of Eastern Route S-to-N Water Diversion Project in China, where the mixed-flow pumps with guide vanes are installed, consisting of Baoying, Hongze and the No. 2 Suining pumping stations. By using flow rate coefficient and head coefficient as expression, firstly the hydraulic performances of the hydro models used are analyzed. Secondly the structural features and system performances are compared. And finally the measurement results in site are comprehensively evaluated. The results show that the pump models both introduced abroad and developed at home and the pumping system types adopted in the three pumping stations have been confirmed satisfying the requirements of operational conditions and high efficiency, stable and safety operation in all working conditions can be ensured.


2021 ◽  
Vol 7 (6) ◽  
pp. 5788-5793
Author(s):  
Huo Zhenggang ◽  
Shen Yifan ◽  
Zha Xiaoting

With the continuous advancement of the comprehensive reform of agricultural water prices across the country, various water management units across the country have strengthened the management and protection of irrigation facilities such as irrigation pumping stations, improved the operating efficiency of irrigation pumping stations, and saved agricultural irrigation costs; There is still an imbalance in the management and protection of water-lifting irrigation pumping stations, especially in the evaluation of the economic operation effect of the pumping station. For this reason, this paper uses the fuzzy comprehensive evaluation method to evaluate the economic operation of small-scale rural water-lifting irrigation pumping stations. The effect was quantitatively evaluated, providing new and reliable ideas and methods for water management related management departments to evaluate the economic operation of pumping stations; through empirical research on City G, it was also found that City G is still in the economic operation of small irrigation pumping stations. There are some shortcomings, and some technical and economic measures can be used to further improve the economic operation and management efficiency of the pumping station, and further reduce the cost of agricultural irrigation.


2016 ◽  
Vol 38 (3) ◽  
pp. 287-308 ◽  
Author(s):  
Anthony CW Lo ◽  
Phil Jones ◽  
Francis WH Yik

In this paper, a hypothetical district representing the typical urban districts in Hong Kong was considered and a district cooling system model was designed for this district. Mathematical models were tailor-designed for all the major district cooling system equipment to simulate the effects of changing the pumping station’s configuration on the energy performance of the district cooling system. The measures included the use of multiple pumping stations and an unequal number of pumps in each station. In view of the vast number of pumping station combinations possible for analysis, a hydraulic gradient evaluation method was adopted to assist a quick assessment and exploration of those combinations that would be technically feasible. Furthermore, the energy performance of all these technically feasible combinations was evaluated to identify an optimum design that would lead to the lowest electricity consumption. Practical application: In a district cooling system where there is only one main pumping station for distributing chilled water to all the buildings in the district, the chilled water flow rate and pressure head are very high. Adding booster pumping stations can help to reduce pressure head, pump size and hence power demand of the main pumping station. In this paper, the effects of different pumping station configurations on the energy performance of a district cooling system were investigated. The configuration that could mitigate the impacts of a low delta-T on the energy performance of the district cooling system was also identified.


2013 ◽  
Vol 8 (3) ◽  
pp. 447-455 ◽  
Author(s):  
Hideo Oshikawa ◽  
◽  
Yuka Mito ◽  
Toshimitsu Komatsu ◽  

The new concept for flood control called ‘Cascade’ method which permits dams to overflow around an upstream region with a sequence of dams constructed in a river is proposed. Multiple small scale dry dams should be constructed in series instead of a large scale dam in order to prevent flood disaster and preserve the natural environment. Recently a flood control dam with a bottom outlet hole as its regular spillway, known as ‘dry dam’, has been reviewed, planned and built in some sites in Japan. Under a condition of a common reservoir capacity, the Cascade type flood control permitting upstream dams to overflow except for the most downstream dam in a river is compared with a conventional one not to overflow each dam in a numerical simulation. As a result, it is made clear that the Cascade method using multiple dry dams is much more effective than the conventional one. In this connection, the Cascade type flood control method permitting upstream dams to overflow from emergency spillways except for the most downstream dam can be applied to normal storage dams with slide gates operated conventionally. Therefore, it could become an effective adaptation method for the global warming problem since it is performed by only changing how to operate slide gates in existing storage dams constructed in series. In addition, we also propose a new type of dry dam that has a closable and openable gate for its regular spillway primarily to retain the water for the water utilization. The new type of dry dam, which should be constructed in the upper reach away from the existing downstream storage dam needing still more its capacity for water utilization, ensures the amount of water available for the use by closing the regular spillway after the new dry dam is at full capacity, and the flood control capacity of the dams including the new dry dam is stronger than that of the normal dams owing to the storage function with the new dry dam. The new dry dams may improve the water utilization, the flood control, and environmentfriendliness under the current condition in Thailand damaged by the severe flood in 2011.


Author(s):  
Andriamahefasoa Rajaonison ◽  
Hery Tiana Rakotondramiarana

Developed and crafted in Madagascar, the Raseta pump is a novel hydraulic ram (hydram) pump using a springs system. It operates differently from other pumps by the exclusive use of water energy due to the water hammer phenomenon induced by the sudden stop of the water flow. The present study initiates the investigation of the environmental impacts of this new type of hydram pump through a life cycle analysis using OpenLCA 1.8. It was found that, when operating in a small-scale water pumping system, the choice of the pump supply pipe material has small differences of environmental impacts, whether the material is made of steel or polyvinyl chloride (PVC). Moreover, compared to a solar pump for the same pumping flow rate, the use of the Raseta pump is more environmentally friendly and less harmful to human health. However, the actual advantageous utilization of such a system needs further studies such as social and techno-economic analysis.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1214
Author(s):  
Sergey N. Podyachev ◽  
Rustem R. Zairov ◽  
Asiya R. Mustafina

The present review is aimed at highlighting outlooks for cyclophanic 1,3-diketones as a new type of versatile ligands and building blocks of the nanomaterial for sensing and bioimaging. Thus, the main synthetic routes for achieving the structural diversity of cyclophanic 1,3-diketones are discussed. The structural diversity is demonstrated by variation of both cyclophanic backbones (calix[4]arene, calix[4]resorcinarene and thiacalix[4]arene) and embedding of different substituents onto lower or upper macrocyclic rims. The structural features of the cyclophanic 1,3-diketones are correlated with their ability to form lanthanide complexes exhibiting both lanthanide-centered luminescence and magnetic relaxivity parameters convenient for contrast effect in magnetic resonance imaging (MRI). The revealed structure–property relationships and the applicability of facile one-pot transformation of the complexes to hydrophilic nanoparticles demonstrates the advantages of 1,3-diketone calix[4]arene ligands and their complexes in developing of nanomaterials for sensing and bioimaging.


2014 ◽  
Vol 556-562 ◽  
pp. 1408-1412
Author(s):  
Zhi Qiang Zhang

In this paper, the following work is done: a new type of translational transmission device is designed; explained in detail are the operating principle, structural features, relationship of mechanism parameter and non interference conditions of the movement; the optimization analysis of transmission device is implemented on the basis of non interference conditions of the bucket movement; structural modeling and simulation analysis are carried out by utilization of Pro/e & Recurdyn; and based on virtual prototype technology, the new type of translational transmission device is verified by experiments, the data of which prove the translational transmission device reasonable and practicable. In conclusion, this paper has laid the theoretical foundation of the practical application of the translational transmission device.


2011 ◽  
Vol 71-78 ◽  
pp. 4634-4637
Author(s):  
Tian Lin Cui ◽  
Jing Kun Pi ◽  
Yong Hui Liu ◽  
Zhen Hua He

In order to optimize the design of flexible pressurized anchor, this paper gives a further analysis on structural features of the new type of flexible pressurized anchor and carries out a contact analysis on anchor system by using the finite element method. It calculates as well as researches the contact stress relation of interactional anchor rod and surrounding rock under the circumstance of anchoring, obtaining the law of all major design parameters of anchor rod structure and pressure from surrounding rock influencing the anchoring performance and arriving at the conclusion that the anchor rod is adapted to various conditions of surrounding rock. They not only serve as important references for optimized design and application of anchor rod, but also provide a basis for the experiment of new type of anchor rod.


2014 ◽  
Vol 488-489 ◽  
pp. 605-608
Author(s):  
Xiang Zan Xie

Reinforced concrete masonry arch aqueduct is a common water diversion engineering structure. Aqueduct is decorated on the concrete cushion layer, cushion layer effects on masonry arch, the structures stress is uniform, carrying capacity is strong. This paper adopts finite element method to carry out force analysis for reinforced concrete masonry arch aqueduct of Lijia pumping station, considering aqueduct weight, water pressure and earthquake effect, etc. Researching stress and deformation distribution law of reinforced concrete masonry arch aqueduct.


Author(s):  
Raja Abou Ackl ◽  
Andreas Swienty ◽  
Flemming Lykholt-Ustrup ◽  
Paul Uwe Thamsen

In many places lifting systems represent central components of wastewater systems. Pumping stations with a circular wet-pit design are characterized by their relatively small footprint for a given sump volume as well as their relatively simple construction technique [1]. This kind of pumping stations is equipped with submersible pumps. These are located in this case directly in the wastewater collection pit. The waste water passes through the pump station untreated and loaded with all kind of solids. Thus, the role of the pump sump is to provide an optimal operating environment for the pumps in addition to the transportation of sewage solids. Understanding the effects of design criteria on pumping station performance is important to fulfil the wastewater transportation as maintenance-free and energy efficient as possible. The design of the pit may affect the overall performance of the station in terms of poor flow conditions inside the pit, non-uniform und disturbed inflow at the pump inlet, as well as air entrainment to the pump. The scope of this paper is to evaluate the impact of various design criteria and the operating conditions on the performance of pump stations concerning the air entrainment to the pump as well as the sedimentation inside the pit. This is done to provide documentation and recommendations of the design and operating of the station. The investigated criteria are: the inflow direction, and the operating submergence. In this context experiments were conducted on a physical model of duplex circular wet pit wastewater pumping station. Furthermore the same experiments were reproduced by numerical simulations. The physical model made of acrylic allowed to visualize the flow patterns inside the sump at various operating conditions. This model is equipped with five different inflow directions, two of them are tangential to the pit and the remaining three are radial in various positions relative to the pumps centerline. Particles were used to enable the investigation of the flow patterns inside the pit to determine the zones of high sedimentation risk. The air entrainment was evaluated on the model test rig by measuring the depth, the width and the length of the aerated region caused by the plunging water jet and by observing the air bubbles entering the pumps. The starting sump geometry called baseline geometry is simply a flat floor. The tests were done at all the possible combinations of inflow directions, submergence, working pump and operating flow. The ability of the numerical simulation to give a reliable prediction of air entrainment was assessed to be used in the future as a tool in scale series to define the scale effect as well as to analyze the flow conditions inside the sump and to understand the air entrainment phenomenon. These simulations were conducted using the geometries of the test setup after generating the mesh with tetrahedral elements. The VOF multiphase model was applied to simulate the interaction of the liquid water phase and the gaseous air phase. On the basis of the results constructive suggestions are derived for the design of the pit, as well as the operating conditions of the pumping station. At the end recommendations for the design and operating conditions are provided.


Sign in / Sign up

Export Citation Format

Share Document