Derivation of Generalized Datum Reference Frames for Geometric Tolerance Analysis

Author(s):  
Swami D. Nigam ◽  
James D. Guilford ◽  
Joshua U. Turner

Abstract Datum reference frames define coordinate systems for use in determining part compliance with geometric tolerances. A datum reference frame is specified based on the perfect nominal geometry of the part features called out as datums. However, the actual computation of a coordinate system frame of reference from the datum callouts becomes quite challenging when the features depart from nominal location, orientation, size, and form. We present a general method for representing datum reference frames (both partial and complete), and for computing a coordinate system from a simulated varianced part and a datum reference frame specification. The method makes use of built-in construction procedures, and derived or “virtual” geometry, in conjunction with a powerful parts positioning module that simulates the placement of the varianced part in a fixture represented by the datum surfaces. The reliance on virtual geometry as an intermediate representation, permits the concise representation of not only the datum reference frame types defined in the standard, but also allows for any arbitrary datum reference frames constructed by the user.

1986 ◽  
Vol 114 ◽  
pp. 145-168 ◽  
Author(s):  
T. Fukushima ◽  
M.-K Fujimoto ◽  
H. Kinoshita ◽  
S. Aoki

The treatment of the coordinate systems is briefly reviewed in the Newtonian mechanics, in the special theory of relativity, and in the general relativistic theory, respectively. Some reference frames and coordinate systems proposed within the general relativistic framework are introduced. With use of the ideas on which these coordinate systems are based, the proper reference frame comoving with a system of mass-points is defined as a general relativistic extension of the relative coordinate system in the Newtonian mechanics. The coordinate transformation connecting this and the background coordinate systems is presented explicitly in the post-Newtonian formalism. The conversion formulas of some physical quantities caused by this coordirate transformation are discussed. The concept of the rotating coordinate system is reexamined within the relativistic framework. A modification of the introduced proper reference frame is proposed as the basic coordinate system in the astrometry. The relation between the solar system barycentric coordinate system and the terrestrial coordinate system is given explicitly.


1990 ◽  
Vol 141 ◽  
pp. 99-110
Author(s):  
Han Chun-Hao ◽  
Huang Tian-Yi ◽  
Xu Bang-Xin

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.


2003 ◽  
Vol 125 (3) ◽  
pp. 609-616 ◽  
Author(s):  
Rodrigo A. Marin ◽  
Placid M. Ferreira

A machining fixture controls position and orientation of datum references (used to define important functional features of the geometry of a mechanical part) relative the reference frame for an NC program. Inaccuracies in fixture’s location scheme result in a deviation of the work part from its nominal specified geometry. For a part to be acceptable this deviation must be within the limits allowed by the geometric tolerances specified. This paper addresses the problem of characterizing the acceptable level of inaccuracy in the location scheme so that the features machined on the part comply with the limits associated with its geometric tolerances. First we solve the “forward problem” that involves predicting the tolerance deviation resulting at a feature from a known set of errors on the locators. However, the paper concentrates on solving the “inverse” problem that involves establishing bounds on the errors of the locators to ensure that the limits specified by geometric tolerances at a feature are not violated.


2013 ◽  
Vol 765-767 ◽  
pp. 759-762
Author(s):  
Jian Xin Yang ◽  
Zhen Tao Liu ◽  
Ben Zhao

This paper reviews two major models (Small Displacement Torsor, Deviation and Clearance Domain) for 3D functional tolerance analysis and compares them. The underlying mathematical representation of geometric tolerances can be classified as inequalities and multi-variate region. The corresponding algebraic or geometric tolerance propagation mechanism of each model is briefly introduced for worst-case and statistical tolerancing. Through a comprehensive comparison of these models, this paper gives some suggestions for choosing the appropriate method for a given tolerancing problem.


Author(s):  
Payam Haghighi ◽  
Prabath Vemulapalli ◽  
Prashant Mohan ◽  
Jami J. Shah ◽  
Joseph K. Davidson

Geometric Dimensioning and Tolerancing (GD&T) Standards have established a language for clear and concise specification of dimensional and geometric variations on manufactured parts. The language includes symbols for tolerance type, tolerance value, datum and reference frames, diameter and material condition modifiers and associativity with geometric entities. Designers use the standard to communicate their dimensional specifications to manufacturing and inspection personnel. However, process planners appear to be less formal in how tolerances are represented in process plans. Typically, they are shown only as dimensional plus/minus values. Datum Reference Frames (DRF) and geometric tolerance symbols are absent. It is believed that the latter are implicit in the set-up and fixturing prescribed in the plan. In this paper we explore how one might extract the implicit information systematically. The motivation for this effort is to verify the consistency of manufacturing tolerances with design specs and to be able to use the same tolerance analysis tools used in design. We discuss three research issues: extracting implied DRFs from set-ups and fixtures; converting plus/minus tolerances to appropriate geometric tolerances; and dealing with transient features — which are features that do not exist on the finished part used for GDT specs by the designer. We propose a new data structure, PCTF (process oriented constraint tolerance feature graph) to facilitate mapping between design and manufacturing tolerances.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 367
Author(s):  
Anne-Catherine de la Hamette ◽  
Thomas D. Galley

A fully relational quantum theory necessarily requires an account of changes of quantum reference frames, where quantum reference frames are quantum systems relative to which other systems are described. By introducing a relational formalism which identifies coordinate systems with elements of a symmetry group G, we define a general operator for reversibly changing between quantum reference frames associated to a group G. This generalises the known operator for translations and boosts to arbitrary finite and locally compact groups, including non-Abelian groups. We show under which conditions one can uniquely assign coordinate choices to physical systems (to form reference frames) and how to reversibly transform between them, providing transformations between coordinate systems which are `in a superposition' of other coordinate systems. We obtain the change of quantum reference frame from the principles of relational physics and of coherent change of reference frame. We prove a theorem stating that the change of quantum reference frame consistent with these principles is unitary if and only if the reference systems carry the left and right regular representations of G. We also define irreversible changes of reference frame for classical and quantum systems in the case where the symmetry group G is a semi-direct product G=N⋊P or a direct product G=N×P, providing multiple examples of both reversible and irreversible changes of quantum reference system along the way. Finally, we apply the relational formalism and changes of reference frame developed in this work to the Wigner's friend scenario, finding similar conclusions to those in relational quantum mechanics using an explicit change of reference frame as opposed to indirect reasoning using measurement operators.


Author(s):  
Jhy-Cherng Tsai

Abstract Manufacturing tolerances and joint clearances are the two major factors affecting mechanism accuracy. As error analysis is one of the bottlenecks of precision machinery design, methods for geometric tolerance analysis must be investigated for mechanism design. This paper describes an approach for analyzing errors caused by geometric tolerances and clearances in mechanism design. The method consists of three parts: variational kinematic models for geometric tolerances, a systematic geometric dimensioning and tolerancing (GD&T) representation scheme, and computation methods for interval and statistical tolerances. Variational models are based on differential transformation to model kinematic errors caused by tolerances and clearances. The model is consistent with error models used in typical mechanical devices. The GD&T scheme, called the Tolerance Network (TN), employs graph theory for representing GD&T as well as fitting specifications of a design is described. Errors are propagated by traversal throughout the network and stack-up of these variational models along the dominate path in the TN. Error computation methods for both interval and statistical tolerance types are discussed. A method for computing central moments, rather than analytical distributions, of statistical tolerances is developed to reduce the computation complexity. A five-degree-of-freedom robot is used as an example at each step to illustrate this approach.


Universe ◽  
2018 ◽  
Vol 4 (10) ◽  
pp. 103 ◽  
Author(s):  
Steffen Gielen

While the equations of general relativity take the same form in any coordinate system, choosing a suitable set of coordinates is essential in any practical application. This poses a challenge in background-independent quantum gravity, where coordinates are not a priori available and need to be reconstructed from physical degrees of freedom. We review the general idea of coupling free scalar fields to gravity and using these scalars as a “matter reference frame”. The resulting coordinate system is harmonic, i.e., it satisfies the harmonic (de Donder) gauge. We then show how to introduce such matter reference frames in the group field theory approach to quantum gravity, where spacetime is emergent from a “condensate” of fundamental quantum degrees of freedom of geometry, and how to use matter coordinates to extract physics. We review recent results in homogeneous and inhomogeneous cosmology, and give a new application to the case of spherical symmetry. We find tentative evidence that spherically-symmetric group field theory condensates defined in this setting can reproduce the near-horizon geometry of a Schwarzschild black hole.


2011 ◽  
Vol 10 ◽  
pp. 9-13
Author(s):  
Kalyan Gopal Shrestha

The Surveying and Mapping community now has the benefit of 3-dimensional coordinates at the centimeter level, through the Global Positioning System (GPS). The reference frame for GPS, World Geodetic System of 1984 (WGS84), within which a user ascertains these coordinates is essentially geocentric. All coordinated data and mapping in Nepal are based on a non-geocentric coordinate system known as the Everest Datum of 1830. This paper tries to present a practical approach to define transformation parameters between the two coordinate systems for Nepal.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


Sign in / Sign up

Export Citation Format

Share Document