Quasi-Periodic Motions of Articulated Pipes Conveying Flowing Fluid

Author(s):  
Zsolt Szabó

Abstract In this paper two nice examples are investigated where a ‘chain’ of n = (1, 2) pieces of rigid pipes contains incompressible and frictionless flowing fluid. We give an overview about the linear and nonlinear analysis of the autonomous system, i.e. when the pipes contain steady flow. Assuming pulsatile flow, the system becomes time-periodic. The stability charts of the linearized system are generated applying a numerical method based on Chebyshev polynomials. Finally, we analyze the effect of the nonlinear part in some critical points of the obtained stability charts and the dynamic behaviour of the original nonlinear periodic system is simulated numerically. The results are shown in Poincaré maps and bifurcation diagrams.

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Jifeng Chu ◽  
Ting Xia

Leta(t),b(t)be continuousT-periodic functions with∫0Tb(t)dt=0. We establish one stability criterion for the linear damped oscillatorx′′+b(t)x′+a(t)x=0. Moreover, based on the computation of the corresponding Birkhoff normal forms, we present a sufficient condition for the stability of the equilibrium of the nonlinear damped oscillatorx′′+b(t)x′+a(t)x+c(t)x2n-1+e(t,x)=0, wheren≥2,c(t)is a continuousT-periodic function,e(t,x)is continuousT-periodic intand dominated by the powerx2nin a neighborhood ofx=0.


Author(s):  
Siyu Guo ◽  
Albert C. J. Luo

Abstract In this paper, periodic motions in an autonomous system with a discontinuous vector field are discussed. The periodic motions are obtained by constructing a set of algebraic equations based on motion mapping structures. The stability of periodic motions is investigated through eigenvalue analysis. The grazing bifurcations are presented by varying the spring stiffness. Once the grazing bifurcation occurs, periodic motions switches from the old motion to a new one. Numerical simulations are conducted for motion illustrations. The parameter study helps one understand autonomous discontinuous dynamical systems.


Author(s):  
Zsolt Szabó ◽  
S. C. Sinha ◽  
Gábor Stépán

Abstract Several mechanical models exist on elastic pipes containing fluid flow. In this paper those models are considered, where the fluid is incompressible, frictionless and its velocity relative to the pipe has the same but time-periodic magnitude along the pipe at a certain time instant. The pipe can be modelled either as a chain of articulated rigid pipes or as a continuum. The dynamic behaviour of the system strongly depends on the different kinds of boundary conditions and on the fact whether the pipe is considered to be inextensible, i.e. the cross-sectional area of the pipe is constant. The equations of motion are derived via Lagrangian equations and Hamilton’s principle. These systems are non-conservative, and the amount of energy carried in and out by the flow appears in the model. It is well-known, that intricate stability problems arise when the flow pulsates and the corresponding mathematical model, a system of ordinary or partial differential equations, becomes time-periodic. There are several standard techniques, like perturbation method, harmonic balance, finite difference, etc., to analyze these models. The method which constructs the state transition matrix used in Floquet theory in terms of the shifted Chebyshev polynomials of the first kind is especially effective for stability analysis of large systems. The implementation of this method using computer algebra enables us to obtain more accurate results and to investigate more complex models. The stability charts are created with respect to three important parameters: the forcing frequency ω, the perturbation amplitude υ and the mean flow velocity U.


2004 ◽  
Vol 10 (10) ◽  
pp. 1517-1533 ◽  
Author(s):  
V. S. Deshmukh ◽  
S. C. Sinha

We address the problem of designing controllers that guarantee asymptotic stability of a class of linear as well as nonlinear dynamical systems with time-periodic coefficients. Using a repeated procedure consisting of the Lyapunov-Floquet transformation, the backstepping technique, and Floquet theory, the asymptotic stability of the closed-loop linearized system is guaranteed. Further, a Lyapunov matrix for the closed-loop asymptotically stable linearized system is constructed. This Lyapunov function is then used to design a combination of linear and nonlinear controllers in order to guarantee the asymptotic stability of the nonlinear system. The methodology is illustrated by designing linear and nonlinear control laws for a system consisting of two statically coupled pendula, each subjected to a time-periodic force acting in the axial direction.


2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


1999 ◽  
Vol 121 (1) ◽  
pp. 101-104 ◽  
Author(s):  
M. Moh’d ◽  
K. Huseyin

The static and dynamic bifurcations of an autonomous system associated with a twofold zero eigenvalue (of index one) are studied. Attention is focused on Hopf bifurcation solutions in the neighborhood of such a singularity. The family of limit cycles are analyzed fully by applying the formula type results of the Intrinsic Harmonic Balancing method. Thus, parameter-amplitude and amplitude-frequency relationships as well as an ordered form of approximations for the periodic motions are obtained explicitly. A verification technique, with the aid of MAPLE, is used to show the consistency of ordered approximations.


2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


2020 ◽  
Vol 23 (02) ◽  
pp. 124-135
Author(s):  
Muhammad Haris ◽  
Muhammad Shafiq ◽  
Adyda Ibrahim ◽  
Masnita Misiran

This paper proposes, designs, and analyses a novel nonlinear feedback controller that realizes fast, and oscillation free convergence of the synchronization error to the equilibrium point. Oscillation free convergence lowers the failure chances of a closed-loop system due to the reduced chattering phenomenon in the actuator motion, which is a consequence of low energy sm ooth control signal. The proposed controller has a novel structure. This controller does not cancel nonlinear terms of the plant in the closed-loop; this attribute improves the robustness of the loop. The controller consists of linear and nonlinear parts; each part executes a specific task. The linear term in the controller keeps the closed-loop stable, while the nonlinear part of the controller facilitates the fast convergence of the error signal to the vicinity of the origin. Then the linear controller synthesizes a smooth control signal that moves the error signals to zero without oscillations. The nonlinear term of the controller does not contribute to this synthesis. The collaborative combination of linear and nonlinear controllers that drive the synchronization errors to zero is innovative. The paper establishes proof of global stability and convergence behavior by describing a detailed analysis based on the Lyapunov stability theory. Computer simulation results of two numerical examples verify the performance of the proposed controller approach. The paper also provides a comparative study with state-of-the-art controllers.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012074
Author(s):  
Weixin Yu ◽  
Zhen Dai ◽  
Jifeng Zhao ◽  
Lulu Fang ◽  
Yiwen Zhang

Abstract The strength of P92 steel (tensile strength, specified plastic elongation strength) will decrease after its hardness is reduced, ferrite and carbides forming the structure. Carbides of grain size 5-6 are precipitated in the grains and grain boundaries. The martensite lath shape has completely disappeared. M23C6 carbide coarsened obviously, with a maximum size of about 500nm; The Laves phase is also aggregated and coarsened, connecting in a chain shape with a maximum size of more than 500nm. Evolution of microstructure, namely the obvious coarsening of M23C6 carbides and the aggregation and connection of Laves phases in a chain shape, are the main causes for rapid decrease in the stability of the material substructure and evident decline in mechanical properties and hardness. In addition, the MX phase did not change significantly, hardly affecting the hardness reduction of P92 steel.


Sign in / Sign up

Export Citation Format

Share Document