A Vibration Model of a Suspension-Tire System

Author(s):  
Naser Mohamad ◽  
Kambiz Farhang

A two-dimensional suspension-Tire system is modeled to investigate the dynamic interaction between the suspension and the tire of an automotive system. A double A-arm suspension system is used in the model. Lagrange equation for a constrained set of generalized coordinates is employed to derive a lumped-mass model of the system. The effects of friction and mechanical characteristics of the tire-road interface in both lateral and vertical directions is modeled and utilized in the system’s dynamics using the Magic Formula for tire. The utilization of Lagrange equation along with the Magic Formula provided a means of prediction of the system’s dynamic response to different initial sprung mass load conditions and the alteration and optimization of the suspension system geometry to achieve minimum sprung mass and tire vibration. The model is used to illustrate tire slip angle variation as a result of induced vibration due to a step load along the vertical and lateral direction. Albeit the response is a damped nonlinear vibration response, the system shows relatively large variation in slip angle in the transient regime of the system response.

2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
H. F. Wang ◽  
G. Chen

Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.


Author(s):  
Felix Figaschewsky ◽  
Arnold Kühhorn

With increasing demands for reliability of modern turbomachinery blades the quantification of uncertainty and its impact on the designed product has become an important part of the development process. This paper aims to contribute to an improved approximation of expected vibration amplitudes of a mistuned rotor assembly under certain assumptions on the probability distribution of the blade’s natural frequencies. A previously widely used lumped mass model is employed to represent the vibrational behavior of a cyclic symmetric structure. Aerodynamic coupling of the blades is considered based on the concept of influence coefficients leading to individual damping of the traveling wave modes. The natural frequencies of individual rotor blades are assumed to be normal distributed and the required variance could be estimated due to experiences with the applied manufacturing process. Under these conditions it is possible to derive the probability distribution of the off-diagonal terms in the mistuned equations of motions, that are responsible for the coupling of different circumferential modes. Knowing these distributions recent limits on the maximum attainable mistuned vibration amplitude are improved. The improvement is achieved due to the fact, that the maximum amplification depends on the mistuning strength. This improved limit can be used in the development process, as it could partly replace probabilistic studies with surrogate models of reduced order. The obtained results are verified with numerical simulations of the underlying structural model with random mistuning patterns based on a normal distribution of individual blade frequencies.


2021 ◽  
Author(s):  
Brendon M. Nickerson ◽  
Anriëtte Bekker

Abstract Full-scale measurements were conducted on the port side propulsion shaft the S.A. Agulhas II during the 2019 SCALE Spring Cruise. The measurements included the shaft torque captured at two separate measurement locations, and the shaft rotational speed at one measurement location. The ice-induced propeller moments are estimated from the full-scale shaft responses using two inverse models. The first is a published discrete lumped mass model that relies on regularization due to the inverse problem being ill-posed. This model is only able to make use of the propulsion shaft torque as inputs. The second model is new and employs modal superposition to represent the propulsion shaft as a combination of continuous modes, resulting in a well-posed problem. This new model requires the additional measurement of the shaft rotational speed for the inverse solution. The continuous model is shown to be more consistent and efficient, which allows its use in real-time monitoring of propeller moments.


2019 ◽  
Vol 161 (A1) ◽  

The presence of cut outs at different positions of laminated shell component in marine and aeronautical structures facilitate heat dissipation, undertaking maintenance, fitting auxiliary equipment, access ports for mechanical and electrical systems, damage inspection and also influences the dynamic behaviour of the structures. The aim of the present study is to establish a comprehensive perspective of dynamic behavior of laminated deep shells (length to radius of curvature ratio less than one) with cut-out by experiments and numerical simulation. The glass epoxy laminated composite shell has been prepared in the laboratory by resin infusion. The experimental free vibration analysis is carried out on laminated shells with and without cut-out. The mass matrix is developed by considering rotary inertia in a lumped mass model in the numerical modeling. The results obtained from numerical and experimental studies are compared for verification and the consistency between mode shapes is established by applying modal assurance criteria.


Author(s):  
Chao Liu ◽  
Dongxiang Jiang ◽  
Jingming Chen

Crack failures continually occur in shafts of turbine generator, where grid disturbance is an important cause. To estimate influences of grid disturbance, coupled torsional vibration and fatigue damage of turbine generator shafts are analyzed in this work, with a case study in a 600MW steam unit in China. The analysis is the following: (i) coupled system is established with generator model and finite element method (FEM)-based shafts model, where the grid disturbance is signified by fluctuation of generator outputs and the shafts model is formed with lumped mass model (LMM) and continuous mass model (CMM), respectively; (ii) fatigue damage is evaluated in the weak location of the shafts through local torque response computation, stress calculation, and fatigue accumulation; and (iii) failure-prevention approach is formed by solving the inverse problem in fatigue evaluation. The results indicate that the proposed scheme with continuous mass model can acquire more detailed and accurate local responses throughout the shafts compared with the scheme without coupled effects or the scheme using lumped mass model. Using the coupled torsional vibration scheme, fatigue damage caused by grid disturbance is evaluated and failure prevention rule is formed.


Author(s):  
Tatsuya Kaneko ◽  
Ryota Wada ◽  
Masahiko Ozaki ◽  
Tomoya Inoue

Offshore drilling with drill string over 10,000m long has many technical challenges. Among them, the challenge to control the weight on bit (WOB) between a certain range is inevitable for the integrity of drill pipes and the efficiency of the drilling operation. Since WOB cannot be monitored directly during drilling, the tension at the top of the drill string is used as an indicator of the WOB. However, WOB and the surface measured tension are known to show different features. The deviation among the two is due to the dynamic longitudinal behavior of the drill string, which becomes stronger as the drill string gets longer and more elastic. One feature of the difference is related to the occurrence of high-frequency oscillation. We have analyzed the longitudinal behavior of drill string with lumped-mass model and captured the descriptive behavior of such phenomena. However, such physics-based models are not sufficient for real-time operation. There are many unknown parameters that need to be tuned to fit the actual operating conditions. In addition, the huge and complex drilling system will have non-linear behavior, especially near the drilling annulus. These features will only be captured in the data obtained during operation. The proposed hybrid model is a combination of physics-based models and data-driven models. The basic idea is to utilize data-driven techniques to integrate the obtained data during operation into the physics-based model. There are many options on how far we integrate the data-driven techniques to the physics-based model. For example, we have been successful in estimating the WOB from the surface measured tension and the displacement of the drill string top with only recurrent neural networks (RNNs), provided we have enough data of WOB. Lack of WOB measurement cannot be avoided, so the amount of data needs to be increased by utilizing results from physics-based numerical models. The aim of the research is to find a good combination of the two models. In this paper, we will discuss several hybrid model configurations and its performance.


Author(s):  
Qiaobin Liu ◽  
Wenku Shi ◽  
Zhiyong Chen

The unbalanced excitation force and torque generated by an engine that resonate with the natural frequency of drivetrain often causes vibration and noise problems in vehicles. This study aims to comprehensively employ theoretical modelling and experimental identification methods to obtain the fluctuation coefficients of engine excitation torque when a car is in different gear positions. The inherent characteristics of the system are studied on the basis of the four-degree-of-freedom driveline lumped mass model and the longitudinal dynamics model of vehicle. The correctness of the model is verified by torsional vibration test. The second order's engine torque fluctuation coefficients are identified by firefly algorithm according to the curves of flywheel speed in different gears under the acceleration condition of the whole open throttle. The torque obtained by parameter identification is applied to the model, and the torsional vibration response of the system is analysed. The influence of the key parameters on the torsional vibration response of the system is investigated. The study concludes that proper reduction of clutch stiffness can increase clutch damping and half-axle rigidity, which can help improve the torsional vibration performance of the system. This study can provide reference for vehicle drivetrain modelling and torsional vibration control.


Author(s):  
H K Kim ◽  
Y-S Park

An efficient state-space method is presented to determine time domain forced responses of a structure using the Lagrange multiplier based sub-structure technique. Compared with the conventional mode synthesis methods, the suggested method can be particularly effective for the forced response analysis of a structure subjected to parameter changes with time, such as a missile launch system, and/or having localized non-linearities, because this method does not need to construct the governing equations of the combined whole structure. Both the loaded interface free-free modes and free interface modes can be employed as the modal bases of each sub-structure. The sub-structure equations of motion are derived using Lagrange multipliers and recurrence discrete-time state equations based upon the concept of the state transition matrix are formulated for transient response analysis. The suggested method is tested with two example structures, a simple lumped mass model with a non-linear joint and an abruptly parameter changing structure. The test results show that the suggested method is very accurate and efficient in calculating forced responses and in comparing it with the direct numerical integration method.


1999 ◽  
Vol 121 (2) ◽  
pp. 141-148 ◽  
Author(s):  
S. H. Choi ◽  
J. Glienicke ◽  
D. C. Han ◽  
K. Urlichs

In this paper we investigate the rotordynamics of a geared system with coupled lateral, torsional and axial vibrations, with a view toward understanding the severe vibration problems that occurred on a 28-MW turboset consisting of steam turbine, double helical gear and generator. The new dynamic model of the shaft line was based on the most accurate simulation of the static shaft lines, which are influenced by variable steam forces and load-dependent gear forces. The gear forces determine the static shaft position in the bearing shell. Each speed and load condition results in a new static bending line which defines the boundary condition for the dynamic vibration calculation of the coupled lateral, torsional and axial systems. Rigid disks and distributed springs were used for shaft line modeling. The tooth contact was modeled by distributed springs acting normally on the flank surfaces of both helices. A finite element method with distributed mass was used for lateral and torsional vibrations. It was coupled to a lumped mass model describing the axial vibrations. The forced vibrations due to unbalances and static transmission errors were calculated. The eigenvalue problem was solved by means of a stability analysis showing the special behavior of the coupled system examined. The calculation was successfully applied, and the source of the vibration problem could be located as being a gear-related transmission error. Several redesign proposals lead to a reliable and satisfactory vibrational behavior of the turboset.


Author(s):  
Mohammed F. Daqaq ◽  
Elihab M. Abdel-Rahman ◽  
Ali H. Nayfeh

The fast response of micromirrors and their ability to achieve large scanning angles and low wavelength sensitivity, has made them an appealing substitute for traditional scanning and display technologies. To achieve large rotation angles, while minimizing the voltage requirements, the microscanner is excited at its resonance frequency and then used to steer a light beam along a surface. In this work, we develop a comprehensive model of a torsional microscanner. Based on the eigenvalue problem, we reduce the model to a 2-DOF lumped-mass model that captures the significant dynamics of the microscanner. We use the method of multiple scales to derive an approximate analytical solution of the microscanner response to combined DC and resonant AC voltage excitation. We examined the characteristics of the solution and found that, for a range of DC voltage, a two-to-one internal resonance occurs between the first two modes. Therefore, the energy fed to the first (torsional) mode may be channeled to the second (bending) mode causing an undesirable steady-state response. This phenomenon results in significant degradation in the microscanner performance, therefore, the designer needs to identify it, design around it, or control it.


Sign in / Sign up

Export Citation Format

Share Document