Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing

Author(s):  
Tamer M. Wasfy

A time-accurate finite element model for simulating the fully-coupled dynamic response of flexible multibody systems and liquid sloshing in tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time-accurate parallel explicit solver. The FE model consists of: hexahedral, beam, and truss solid elements; rigid bodies; joints; actuators; hexahedral incompressible fluid elements; and quadrilateral fluid-solid interface elements. The fluid mesh is modeled using a very light and compliant solid mesh which allows the fluid mesh to move/deform along with the tank using the Arbitrary Lagrangian-Eulerian formulation. The fluid’s free-surface is modeled using an acceptor-donor volume-of-fluid based algorithm. The motion of the solid and fluid is referred to a global inertial Cartesian reference frame. A total Lagrangian deformation description is used for the solid elements. The penalty technique is used to model the joints. Numerical simulations are presented for a half-filled tank supported by linear springs mounted on a test fixture.

Author(s):  
Aihong Zhao ◽  
Ken Digges ◽  
Mark Field ◽  
David Richens

Blunt traumatic rupture of the carotid artery is a rare but life threatening injury. The histology of the artery is key to understanding the aetiology of this injury. The carotid artery is composed of three layers known as the tunica intima, media, and adventitia, with distinct biomechanical properties. In order to examine the behaviour of the carotid artery under external load we have developed a three layer finite element model of this vessel. A rubber-like material model from LS-DYNA was selected for the FE model. The Arbitrary-Lagrangian Eulerian (ALE) approach was adopted to simulate the interaction between the fluid (blood) and the structure (carotid). To verify the FE model, the impact bending tests are simulated using this FE model. Simulation results agree with tests results well. Furthermore, the mechanical behaviour of carotid artery tissues under impact loading were revealed by the simulations. The results provide a basis for a more in-depth investigation of the carotid artery in vehicle crashes. In addition, it provides a basis for further work on aortic tissue finite element modeling.


Author(s):  
Ibrahim Konuk ◽  
Robert Gracie

The main objective of this paper is to present a Finite Element (FE) numerical model of the ice scour process. The FE model is developed to study the soil deformation and transport process around the scouring ice and to investigate the effects of the ice scour on a pipeline buried or laid in a trench cut on the seabed. The focus of this paper is on the scours caused by ice ridges commonly observed in the Beaufort Sea. The developed FE model is a new application of the Arbitrary-Lagrangian-Eulerian (ALE) method to a soil mechanics problem involving very large deformations. Soil material, originally positioned in front of the ice ridge, is transported forward and sideways through the FE mesh and deposited in the berms formed on both sides of the scour. The soil material below the scour depth similarly moves across the mesh simulating the subscour effect. An inviscid CAP plasticity constitutive model is used to model the soil material. This paper focuses on the interaction between the ice ridge and the seabed. It describes soil transport process involved during the interaction. The soil deformation field obtained from the model is compared with the empirical deformation functions commonly used in current design methods. Future papers will report on the interaction between the ice ridge, the infill in the pipeline trench, and the pipeline; the influence of the soil properties of the trench and the seabed will also be studied.


Author(s):  
Ashwini Gautam ◽  
Chris Fuller ◽  
James Carneal

This work presents an extensive analysis of the properties of distributed vibration absorbers (DVAs) and their effectiveness in controlling the sound radiation from the base structure. The DVA acts as a distributed mass absorber consisting of a thin metal sheet covering a layer of acoustic foam (porous media) that behaves like a distributed spring-mass-damper system. To assess the effectiveness of these DVAs in controlling the vibration of the base structures (plate) a detailed finite elements model has been developed for the DVA and base plate structure. The foam was modeled as a poroelastic media using 8 node hexahedral elements. The structural (plate) domain was modeled using 16 degree of freedom plate elements. Each of the finite element models have been validated by comparing the numerical results with the available analytical and experimental results. These component models were combined to model the DVA. Preliminary experiments conducted on the DVAs have shown an excellent agreement between the results obtained from the numerical model of the DVA and from the experiments. The component models and the DVA model were then combined into a larger FE model comprised of a base plate with the DVA treatment on its surface. The results from the simulation of this numerical model have shown that there has been a significant reduction in the vibration levels of the base plate due to DVA treatment on it. It has been shown from this work that the inclusion of the DVAs on the base plate reduces their vibration response and therefore the radiated noise. Moreover, the detailed development of the finite element model for the foam has provided us with the capability to analyze the physics behind the behavior of the distributed vibration absorbers (DVAs) and to develop more optimized designs for the same.


2013 ◽  
Vol 456 ◽  
pp. 576-581 ◽  
Author(s):  
Li Fu Xu ◽  
Na Ta ◽  
Zhu Shi Rao ◽  
Jia Bin Tian

A 2-D finite element model of human cochlea is established in this paper. This model includes the structure of oval window, round window, basilar membrane and cochlear duct which is filled with fluid. The basilar membrane responses are calculated with sound input on the oval window membrane. In order to study the effects of helicotrema on basilar membrane response, three different helicotrema dimensions are set up in the FE model. A two-way fluid-structure interaction numerical method is used to compute the responses in the cochlea. The influence of the helicotrema is acquired and the frequency selectivity of the basilar membrane motion along the cochlear duct is predicted. These results agree with the experiments and indicate much better results are obtained with appropriate helicotrema size.


Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Author(s):  
Dwinanti Rika Marthanty ◽  
Herr Soeryantono ◽  
Erick CARLIER ◽  
Dwita Sutjinigsih

There have been attempts to simulate meander dynamics (Langbein and Leopold 1966, Oodgard 1989, Campoerale et. al 2007, da Silva and El-Tahawy 2008, Duan and Julien 2010, Blanckaert and de Vriend 2010, Esfahani and Keshavarzi 2011). Meandering geometry is complex phenomena (Chanson 2004, Wu 2008), this would include the dynamics of flow properties and of morphology. Simulating meander flow dynamics is mostly popular using either Finite Element Method (FEM) or Finite Volume Method (FVM) where are based on Eulerian description, and based on stationer grid-based methods (Wormleaton and Ewunetu 2006, Wu 2008, Duan and Julien 2010, Gomez-Gesteira et. al 2010). As such this model is lack of capability in simulating the dynamics of meander morphology; much effort is put through to overcome this issue with such as Smoothed Particle Hydrodynamics (SPH), Boundary Element Methods, Arbitrary Lagrangian Eulerian, etc. This paper has two objectives; to identify meander flow characteristics and sediment transport distribution patterns, and to simulate meander flow characteristics and sediment transport distribution patterns using FEM. This study has identified that the key of dynamics of flow characteristics are helical flow and coherent structures, and the key of dynamics of transport characteristics are erosion-deposition zone patterns. The finite element model using in this study, RMA has shown its capability to simulate the meander key characteristics above, for small deflection angles (30°) location of maximum erosion-deposition zones near the crossover of the sinuosity, for intermediate deflection angles (70°) location of maximum erosion-deposition zones between the crossover and apex of the sinuosity, and for large deflection angles (110°) location of maximum erosion-deposition zones near the apex of the sinuosity, these are agreed with experiments of Odgaard 1989, da Silva 2006, da Silva et. al 2006, and Esfahani and Keshavarzi (2012). These results can be used as a reference to develop a method to model meander morpho-dynamics.


Author(s):  
Sergey Yu. Fialko

A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.


2017 ◽  
Vol 11 (1) ◽  
pp. 1026-1035 ◽  
Author(s):  
Ahmad Basshofi Habieb ◽  
Gabriele Milani ◽  
Tavio Tavio ◽  
Federico Milani

Introduction:An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.Methods:Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.Results and Conclusion:The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.


Author(s):  
M. M. Islam ◽  
Rakesh K. Kapania

In a test-fixture that the authors were using, steel tabs adhesively bonded to an aluminum panel debonded before the design load on the real test panel was fully applied. Therefore, studying behavior of adhesive joints for joining dissimilar materials was deemed to be necessary. To determine the failure load responsible for debonding of adhesive joints of two dissimilar materials, stress distributions in adhesive joints as obtained by a nonlinear finite element model of the test-fixture were studied under a gradually increasing compression-shear load. It was observed that in-plane stresses were responsible for the debonding of the steel tabs. To achieve a better understanding of adhesive joints of dissimilar materials, finite element models of adhesive lap joints and Asymmetric Double Cantilever Beam (ADCB) were studied, under loadings similar to the loading faced by the test-fixture. The analysis was performed using ABAQUS, a commercially available software, and the cohesive zone modeling was used to study the debonding growth.


Sign in / Sign up

Export Citation Format

Share Document