Towards Risk as a Tradeable Parameter in Complex System Design Trades

Author(s):  
Douglas L. Van Bossuyt ◽  
Stephen D. Wall ◽  
Irem Y. Tumer

Complex system conceptual design trade studies traditionally consider risk after a conceptual design has been created. Further, one person is often tasked with collecting risk information and managing it from each subsystem. This paper proposes a method to explicitly consider and trade risk on the same level as other important system-level variables during the creation of conceptual designs in trade studies. The proposed risk trading method advocates putting each subsystem engineer in control of risk for each subsystem. A risk vector is proposed that organizes many different risk metrics for communication between subsystems. A method of coupling risk models to dynamic subsystem models is presented. Several risk visualization techniques are discussed. An example is presented based upon a simplified spacecraft model. The risk trading method discussed offers an approach to more thoroughly consider risk during the creation of conceptual designs in trade studies.

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jesse Austin-Breneman ◽  
Bo Yang Yu ◽  
Maria C. Yang

During the early stage design of large-scale engineering systems, design teams are challenged to balance a complex set of considerations. The established structured approaches for optimizing complex system designs offer strategies for achieving optimal solutions, but in practice suboptimal system-level results are often reached due to factors such as satisficing, ill-defined problems, or other project constraints. Twelve subsystem and system-level practitioners at a large aerospace organization were interviewed to understand the ways in which they integrate subsystems in their own work. Responses showed subsystem team members often presented conservative, worst-case scenarios to other subsystems when negotiating a tradeoff as a way of hedging against their own future needs. This practice of biased information passing, referred to informally by the practitioners as adding “margins,” is modeled in this paper with a series of optimization simulations. Three “bias” conditions were tested: no bias, a constant bias, and a bias which decreases with time. Results from the simulations show that biased information passing negatively affects both the number of iterations needed and the Pareto optimality of system-level solutions. Results are also compared to the interview responses and highlight several themes with respect to complex system design practice.


Author(s):  
Joseph R. Piacenza ◽  
Kenneth John Faller ◽  
Mir Abbas Bozorgirad ◽  
Eduardo Cotilla-Sanchez ◽  
Christopher Hoyle ◽  
...  

Abstract Robust design strategies continue to be relevant during concept-stage complex system design to minimize the impact of uncertainty in system performance due to uncontrollable external failure events. Historical system failures such as the 2003 North American blackout and the 2011 Arizona-Southern California Outages show that decision making, during a cascading failure, can significantly contribute to a failure's magnitude. In this paper, a scalable, model-based design approach is presented to optimize the quantity and location of decision-making agents in a complex system, to minimize performance loss variability after a cascading failure, regardless of where the fault originated in the system. The result is a computational model that enables designers to explore concept-stage design tradeoffs based on individual risk attitudes (RA) for system performance and performance variability, after a failure. The IEEE RTS-96 power system test case is used to evaluate this method, and the results reveal key topological locations vulnerable to cascading failures, that should not be associated with critical operations. This work illustrates the importance of considering decision making when evaluating system level tradeoffs, supporting robust design.


Author(s):  
Jesse Austin-Breneman ◽  
Bo Yang Yu ◽  
Maria C. Yang

The early stage design of large-scale engineering systems challenges design teams to balance a complex set of considerations. Established structured approaches for optimizing complex system designs offer strategies for achieving optimal solutions, but in practice sub-optimal system-level results are often reached due to factors such as satisficing, ill-defined problems or other project constraints. Twelve sub-system and system-level practitioners at a large aerospace organization were interviewed to understand the ways in which they integrate sub-systems. Responses showed sub-system team members often presented conservative, worst-case scenarios to other sub-systems when negotiating a trade-off as a way of hedging their own future needs. This practice of biased information passing, referred to informally by the practitioners as adding “margins,” is modeled with a series of optimization simulations. Three “bias” conditions were tested: no bias, a constant bias and a bias which decreases with time. Results from the simulations show that biased information passing negatively affects both the number of iterations needed to reach and the Pareto optimality of system-level solutions. Results are also compared to the interview responses and highlight several themes with respect to complex system design practice.


Author(s):  
Jesse Austin-Breneman ◽  
Bo Yang Yu ◽  
Maria C. Yang

Complex system design requires managing competing objectives between many subsystems. Previous field research has demonstrated that subsystem designers may use biased information passing as a negotiation tactic and thereby reach sub-optimal system-level results due to local optimization behavior. One strategy to combat the focus on local optimization is an incentive structure that promotes system-level optimization. This paper presents a new subsystem incentive structure based on Multi-disciplinary Optimization (MDO) techniques for improving robustness of the design process to such biased information passing strategies. Results from simulations of different utility functions for a test suite of multi-objective problems quantify the system robustness to biased information passing strategies. Results show that incentivizing subsystems with this new weighted structure may decrease the error resulting from biased information passing.


Author(s):  
Nikolaos Papakonstantinou ◽  
Seppo Sierla ◽  
David C. Jensen ◽  
Irem Y. Tumer

Large complex systems exhibit complex nominal and failure behavior and understanding that behavior is critical to the accurate assessment of risk. However, this assessment is difficult to accomplish in the early design stage. Multiple subsystem interactions and emergent behavior further complicate early design risk analysis. The goal of this paper is to demonstrate necessary modifications of an existing function-based failure assessment tool for application to the large complex system design domain. Specifically, this paper demonstrates how specific adaptations to this early, qualitative approach to system behavioral simulation and analysis help overcome some of the challenges to large complex system design. In this paper, a boiling water nuclear reactor design serves as a motivating case study for showing how this approach can capture complex subsystem interactions, identify emergent behavior trends, and assess failures at both the component and system level.


2004 ◽  
Vol 127 (4) ◽  
pp. 536-544 ◽  
Author(s):  
H. Mahmoud ◽  
P. Kabamba ◽  
A. G. Ulsoy ◽  
G. Brusher

The problem of setting, balancing, and determining priorities of design targets among the subsystems constituting an engineering system, i.e., managing the targets, is addressed. A new norm-based benchmarking approach is proposed to relate the system-level design objectives to subsystem design targets. The proposed approach provides a systematic means of setting and balancing subsystem design targets to deliver the desired system performance and ranks the priorities of the subsystem targets. Furthermore, the use of system norms, rather than output signal norms, to quantify system and subsystem performance reduces the number of design targets in multi-input multi-output (MIMO) systems. The approach is illustrated on a vehicle example, consisting of a frame, body, and body mounts as the subsystems.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Jesse Austin-Breneman ◽  
Tomonori Honda ◽  
Maria C. Yang

Large-scale engineering systems require design teams to balance complex sets of considerations using a wide range of design and decision-making skills. Formal, computational approaches for optimizing complex systems offer strategies for arriving at optimal solutions in situations where system integration and design optimization are well-formulated. However, observation of design practice suggests engineers may be poorly prepared for this type of design. Four graduate student teams completed a distributed, complex system design task. Analysis of the teams' design histories suggests three categories of suboptimal approaches: global rather than local searches, optimizing individual design parameters separately, and sequential rather than concurrent optimization strategies. Teams focused strongly on individual subsystems rather than system-level optimization, and did not use the provided system gradient indicator to understand how changes in individual subsystems impacted the overall system. This suggests the need for curriculum to teach engineering students how to appropriately integrate systems as a whole.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 133
Author(s):  
Tobias Vonderbank ◽  
Katharina Schmitz

Increasing performance in modern hydraulics is achieved by a close investigation of possible enhancements of its components. Prior research has pointed out that electromechanical actuators can form suitable alternatives to hydraulically piloted control systems. Since the requirements at these actuation systems depend on the operating conditions of the system, each actuator can be optimized to the respective hydraulic system. Considering that many different conceptual designs are suitable, the phase of conceptual design plays a decisive role during the design process. Therefore, this paper focuses on the process of developing new conceptual designs for electromechanical valve actuation systems using the method of function structures. Aiming to identify special design features, which need to be considered during the design process of electromechanical actuation systems, an exemplary actuator was designed based on the derived function structure. To highlight the potential of function structures for the development of new electromechanical valve actuation systems, two principal concepts, which allow the reduction of the necessary forces, have been developed by extending the function structure. These concepts have been experimentally investigated to identify their advantages and disadvantages.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 553 ◽  
Author(s):  
António M. Lopes ◽  
J. A. Tenreiro Machado

Art is the output of a complex system based on the human spirit and driven by several inputs that embed social, cultural, economic and technological aspects of a given epoch. A solid quantitative analysis of art poses considerable difficulties and reaching assertive conclusions is a formidable challenge. In this paper, we adopt complexity indices, dimensionality-reduction and visualization techniques for studying the evolution of Escher’s art. Grayscale versions of 457 artworks are analyzed by means of complexity indices and represented using the multidimensional scaling technique. The results are correlated with the distinct periods of Escher’s artistic production. The time evolution of the complexity and the emergent patterns demonstrate the effectiveness of the approach for a quantitative characterization of art.


Sign in / Sign up

Export Citation Format

Share Document